Large-Scale Dried Reagent Reconstitution and Diffusion Control Using Microfluidic Self-Coalescence Modules.
capillarity
diffusion
high throughput screening
microarrays
microfluidics
Journal
Small (Weinheim an der Bergstrasse, Germany)
ISSN: 1613-6829
Titre abrégé: Small
Pays: Germany
ID NLM: 101235338
Informations de publication
Date de publication:
04 2022
04 2022
Historique:
revised:
13
01
2022
received:
18
11
2021
pubmed:
22
3
2022
medline:
23
4
2022
entrez:
21
3
2022
Statut:
ppublish
Résumé
The positioning and manipulation of large numbers of reagents in small aliquots are paramount to many fields in chemistry and the life sciences, such as combinatorial screening, enzyme activity assays, and point-of-care testing. Here, a capillary microfluidic architecture based on self-coalescence modules capable of storing thousands of dried reagent spots per square centimeter is reported, which can all be reconstituted independently without dispersion using a single pipetting step and ≤5 μL of a solution. A simple diffusion-based mathematical model is also provided to guide the spotting of reagents in this microfluidic architecture at the experimental design stage to enable either compartmentalization, mixing, or the generation of complex multi-reagent chemical patterns. Results demonstrate the formation of chemical patterns with high accuracy and versatility, and simple methods for integrating reagents and imaging the resulting chemical patterns.
Identifiants
pubmed: 35307960
doi: 10.1002/smll.202105939
doi:
Substances chimiques
Indicators and Reagents
0
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
e2105939Informations de copyright
© 2022 Wiley-VCH GmbH.
Références
J. P. Goddard, J. L. Reymond, Curr. Opin. Biotechnol. 2004, 15, 314.
O. Trapp, S. K. Weber, S. Bauch, W. Hofstadt, Angew. Chem., Int. Ed. 2007, 46, 7307.
M. A. Gallop, R. W. Barrett, W. J. Dower, S. P. A. Fodor, E. M. Gordon, J. Med. Chem. 1994, 37, 1233.
E. M. Gordon, R. W. Barrett, W. J. Dower, S. P. A. Fodor, M. A. Gallop, J. Med. Chem. 1994, 37, 1385.
X. D. Xiang, X. Sun, G. Briceño, Y. Lou, K. A. Wang, H. Chang, W. G. Wallace-Freedman, S. W. Chen, P. G. Schultz, Science 1995, 268, 1738.
M. K. Araz, A. M. Tentori, A. E. Herr, J. Lab. Autom. 2013, 18, 350.
S. Quake, in Nobel Symposium, arXiv:1802.05601, 2017, 162.
T. Thorsen, S. J. Maerkl, S. R. Quake, Science 2002, 298, 580.
E. C. Yeh, C. C. Fu, L. Hu, R. Thakur, J. Feng, L. P. Lee, Sci. Adv. 2017, 3.
W. Liu, D. Chen, W. Du, K. P. Nichols, R. F. Ismagilov, Anal. Chem. 2010, 82, 3276.
L. Li, W. Du, R. Ismagilov, J. Am. Chem. Soc. 2010, 132, 106.
Y. Hori, C. Kantak, R. M. Murray, A. R. Abate, Lab Chip 2017, 17, 3037.
H. Song, D. L. Chen, R. F. Ismagilov, Angew. Chem. Int. Ed. Engl. 2006, 45, 7336.
A. M. Kaushik, K. Hsieh, T. H. Wang, Wiley Interdiscip. Rev.: Nanomed. Nanobiotechnol. 2018, 10, 1.
H. S. Kim, S. C. Hsu, S. I. Han, H. R. Thapa, A. R. Guzman, D. R. Browne, M. Tatli, T. P. Devarenne, D. B. Stern, A. Han, Plant Direct 2017, 1, e00011.
S. L. Sjostrom, Y. Bai, M. Huang, Z. Liu, J. Nielsen, H. N. Joensson, H. Andersson Svahn, Lab Chip 2014, 14, 806.
M. T. Guo, A. Rotem, J. A. Heyman, D. A. Weitz, Lab Chip 2012, 12, 2146.
A. B. Theberge, E. Mayot, A. El Harrak, F. Kleinschmidt, W. T. S. Huck, A. D. Griffiths, Lab Chip 2012, 12, 1320.
S. Padmanabhan, A. Sposito, M. Yeh, M. Everitt, I. White, D. L. DeVoe, Biomicrofluidics 2021, 15, 014103.
V. Trivedi, A. Doshi, G. K. Kurup, E. Ereifej, P. J. Vandevord, A. S. Basu, Lab Chip 2010, 10, 2433.
E. M. Payne, D. A. Holland-Moritz, S. Sun, R. T. Kennedy, Lab Chip 2020, 20, 2247.
G. MacBeath, S. L. Schreiber, Science 2000, 289, 1760.
H. Zhu, M. Snyder, Curr. Opin. Chem. Biol. 2003, 7, 55.
L. M. Szymaczak, H.-Y. Kuo, M. Mrksich, Anal. Chem. 2018, 90, 266.
N. G. Welch, J. A. Scoble, B. W. Muir, P. J. Pigram, Biointerphases 2017, 12, 02D301.
O. J. Miller, A. El Harrak, T. Mangeat, J. C. Baret, L. Frenz, B. El Debs, E. Mayot, M. L. Samuels, E. K. Rooney, P. Dieu, M. Galvan, D. R. Link, A. D. Griffiths, Proc. Natl. Acad. Sci. USA 2012, 109, 378.
J. J. Agresti, E. Antipov, A. R. Abate, K. Ahn, A. C. Rowat, J. C. Baret, M. Marquez, A. M. Klibanov, A. D. Griffiths, D. A. Weitz, Proc. Natl. Acad. Sci. USA 2010, 107, 4004.
B. Walter, Anal. Chem. 1983, 55, 498 A.
M. Hitzbleck, E. Delamarche, Chem. Soc. Rev. 2013, 42, 8494.
O. Gökçe, S. Castonguay, Y. Temiz, T. Gervais, E. Delamarche, Nature 2019, 574, 228.
M. D. Greenberg, Applications of Green's Functions in Science and Engineering, Dover Publications, Mineola, New York 2015.
C. H. Chen, M. A. Miller, A. Sarkar, M. T. Beste, K. B. Isaacson, D. A. Lauffenburger, L. G. Griffith, J. Han, J. Am. Chem. Soc. 2013, 135, 1645.
M. Vizovišek, R. Vidmar, M. Drag, M. Fonović, G. S. Salvesen, B. Turk, Trends Biochem. Sci. 2018, 43, 829.
M. Vizovisek, D. Ristanovic, S. Menghini, M. G. Christiansen, S. Schuerle, Int. J. Mol. Sci. 2021, 22, 2514.
S. Martens, A. Landuyt, P. Espeel, B. Devreese, P. Dawyndt, F. D.u Prez, Nat. Commun. 2018, 9, 1.
O. Gökçe, C. Mercandetti, E. Delamarche, Anal. Chem. 2018, 90, 7383.
N. L. Jeon, S. K. W. Dertinger, D. T. Chiu, I. S. Choi, A. D. Stroock, G. M. Whitesides, Langmuir 2000, 16, 8311.
S. Kim, H. J. Kim, N. L. Jeon, Integr. biol. (Camb) 2010, 2, 584.
M. Rocca, Y. Temiz, M. L. Salva, S. Castonguay, T. Gervais, C. M. Niemeyer, E. Delamarche, Lab Chip 2021, 21, 3573.
C. T. Culbertson, S. C. Jacobson, J. Michael Ramsey, Talanta 2002, 56, 365.