Low-cost portable sensor for rapid and sensitive detection of Pb


Journal

Mikrochimica acta
ISSN: 1436-5073
Titre abrégé: Mikrochim Acta
Pays: Austria
ID NLM: 7808782

Informations de publication

Date de publication:
30 10 2024
Historique:
received: 16 07 2024
accepted: 21 10 2024
medline: 31 10 2024
pubmed: 31 10 2024
entrez: 31 10 2024
Statut: epublish

Résumé

Lead ion (Pb

Identifiants

pubmed: 39477888
doi: 10.1007/s00604-024-06798-z
pii: 10.1007/s00604-024-06798-z
doi:

Substances chimiques

Lead 2P299V784P
Water Pollutants, Chemical 0
Gold 7440-57-5
Glutathione GAN16C9B8O

Types de publication

Journal Article Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

718

Subventions

Organisme : National Institute of Food and Agriculture
ID : 2023-67021-40613
Organisme : National Institute of Food and Agriculture
ID : 2023-67021-40613
Organisme : National Institute of Food and Agriculture
ID : 2023-67021-40613

Informations de copyright

© 2024. The Author(s), under exclusive licence to Springer-Verlag GmbH Austria, part of Springer Nature.

Références

World Health Organization (WHO) (2023) World health statistics 2023: monitoring health for the SDGs, sustainable development goals. WHO, Geneva, Switzerland. Available at: https://www.who.int/publications/i/item/9789240069736
Merkoçi A, Yang Q, Nagar B et al (2021) Development of a heavy metal sensing boat for automatic analysis in natural waters utilizing anodic stripping voltammetry. ACS ES T Water 1:30. https://doi.org/10.1021/ACSESTWATER.1C00192
doi: 10.1021/ACSESTWATER.1C00192
Zeng J, Han G, Hu M et al (2021) Geochemistry of dissolved heavy metals in upper reaches of the three gorges reservoir of yangtze riverwatershed during the flood season. Water (Switzerland) 13:2078. https://doi.org/10.3390/W13152078/S1
doi: 10.3390/W13152078/S1
Meng J, Huang J, Oueslati R et al (2021) A single-step DNAzyme sensor for ultra-sensitive and rapid detection of Pb2+ ions. Electrochim Acta 368:137551. https://doi.org/10.1016/J.ELECTACTA.2020.137551
doi: 10.1016/J.ELECTACTA.2020.137551
Le WL, Wen Y, Li L et al (2018) Sensitive and label-free electrochemical lead ion biosensor based on a DNAzyme triggered G-quadruplex/hemin conformation. Biosens Bioelectron 115:91–96. https://doi.org/10.1016/J.BIOS.2018.04.054
doi: 10.1016/J.BIOS.2018.04.054
Federal Register :: National Primary Drinking Water Regulations for Lead and Copper. https://www.federalregister.gov/documents/2000/01/12/00-3/national-primary-drinking-water-regulations-for-lead-and-copper . Accessed 10 Jul 2024.
Ghaedi M, Ahmadi F, Shokrollahi A (2007) Simultaneous preconcentration and determination of copper, nickel, cobalt and lead ions content by flame atomic absorption spectrometry. J Hazard Mater 142:272–278. https://doi.org/10.1016/J.JHAZMAT.2006.08.012
doi: 10.1016/J.JHAZMAT.2006.08.012 pubmed: 17011124
Shih TT, Hsieh CC, Luo YT et al (2016) A high-throughput solid-phase extraction microchip combined with inductively coupled plasma-mass spectrometry for rapid determination of trace heavy metals in natural water. Anal Chim Acta 916:24–32. https://doi.org/10.1016/J.ACA.2016.02.027
doi: 10.1016/J.ACA.2016.02.027 pubmed: 27016435
Smirnova SV, Samarina TO, Ilin DV, Pletnev IV (2018) Multielement determination of trace heavy metals in water by microwave-induced plasma atomic emission spectrometry after extraction in unconventional single-salt aqueous biphasic system. Anal Chem 90:6323–6331. https://doi.org/10.1021/ACS.ANALCHEM.8B01136
doi: 10.1021/ACS.ANALCHEM.8B01136 pubmed: 29668252
Bansod BK, Kumar T, Thakur R et al (2017) A review on various electrochemical techniques for heavy metal ions detection with different sensing platforms. Biosens Bioelectron 94:443–455. https://doi.org/10.1016/J.BIOS.2017.03.031
doi: 10.1016/J.BIOS.2017.03.031 pubmed: 28340464
Amin N, Almasi A, Ozer T et al (2023) Recent advances of optical biosensors in veterinary medicine: moving towards the point of care applications. Curr Top Med Chem 23:2242–2265. https://doi.org/10.2174/1568026623666230718163613
doi: 10.2174/1568026623666230718163613 pubmed: 37464828
Gao C, Huang XJ (2013) Voltammetric determination of mercury(II). TrAC Trends Anal Chem 51:1–12. https://doi.org/10.1016/J.TRAC.2013.05.010
doi: 10.1016/J.TRAC.2013.05.010
Hwang JH, Wang X, Zhao D et al (2019) A novel nanoporous bismuth electrode sensor for in situ heavy metal detection. Electrochim Acta 298:440–448. https://doi.org/10.1016/J.ELECTACTA.2018.12.122
doi: 10.1016/J.ELECTACTA.2018.12.122
Finšgar M, Kovačec L (2020) Copper-bismuth-film in situ electrodes for heavy metal detection. Microchem J 154:104635. https://doi.org/10.1016/J.MICROC.2020.104635
doi: 10.1016/J.MICROC.2020.104635
Zheng J, Rahim MA, Tang J et al (2022) Post-transition metal electrodes for sensing heavy metal ions by stripping voltammetry. Adv Mater Technol 7:2100760. https://doi.org/10.1002/ADMT.202100760
doi: 10.1002/ADMT.202100760
Shamkhalichenar H, Bueche CJ, Choi JW (2020) Printed circuit board (PCB) technology for electrochemical sensors and sensing platforms. Biosens 10:159. https://doi.org/10.3390/BIOS10110159
doi: 10.3390/BIOS10110159
Toldrà A, Ainla A, Khaliliazar S et al (2022) Portable electroanalytical nucleic acid amplification tests using printed circuit boards and open-source electronics. Analyst 147:4249–4256. https://doi.org/10.1039/D2AN00923D
doi: 10.1039/D2AN00923D pubmed: 35993403 pmcid: 9511072
Paydar S, Feizi F, Shamsipur M et al (2022) An ideal ratiometric fluorescent probe provided by the surface modification of carbon dots for the determination of Pb2+. Sensors Actuators B Chem 369:132243. https://doi.org/10.1016/J.SNB.2022.132243
doi: 10.1016/J.SNB.2022.132243
Chen J, Zhu Y, Zhang Y (2016) Glutathione-capped Mn-doped ZnS quantum dots as a room-temperature phosphorescence sensor for the detection of Pb2+ ions. Spectrochim Acta Part A Mol Biomol Spectrosc 164:98–102. https://doi.org/10.1016/J.SAA.2016.04.014
doi: 10.1016/J.SAA.2016.04.014
Zhang J, Sun X, Wu J (2019) Heavy metal ion detection platforms based on a glutathione probe: a mini review. Appl Sci 9:489. https://doi.org/10.3390/APP9030489
doi: 10.3390/APP9030489
Dolati S, Ramezani M, Abnous K, Taghdisi SM (2017) Recent nucleic acid based biosensors for Pb2+ detection. Sens Actuators B Chem 246:864–878. https://doi.org/10.1016/J.SNB.2017.02.118
doi: 10.1016/J.SNB.2017.02.118
Amin N, Afkhami A, Hosseinzadeh L et al (2020) Ratiometric bioassay and visualization of dopamine β-hydroxylase in brain cells utilizing a nanohybrid fluorescence probe. Anal Chim Acta 1105:187–196. https://doi.org/10.1016/J.ACA.2020.01.046
doi: 10.1016/J.ACA.2020.01.046 pubmed: 32138918
Karunakaran C, Madasamy T, Sethy NK (2015) Enzymatic biosensors. Biosens Bioelectron 133–204. https://doi.org/10.1016/B978-0-12-803100-1.00003-7
Zhang J, Zhang Y, Wu J et al (2021) Real-time Cd2+ detection at sub-femtomolar level in various liquid media by an aptasensor integrated with microfluidic enrichment. Sens Actuators B Chem 329:129282. https://doi.org/10.1016/J.SNB.2020.129282
doi: 10.1016/J.SNB.2020.129282
Oliveira VHB, Rechotnek F, da Silva EP et al (2020) A sensitive electrochemical sensor for Pb2+ ions based on ZnO nanofibers functionalized by L-cysteine. J Mol Liq 309:113041. https://doi.org/10.1016/J.MOLLIQ.2020.113041
doi: 10.1016/J.MOLLIQ.2020.113041
Rabenstein DL, Fairhurst MT (1975) Nuclear magnetic resonance studies of the solution chemistry of metal complexes. XI. Binding of Methylmercury by Sulfhydryl-Containing Amino Acids and by Glutathione. J Am Chem Soc 97:2086–2092. https://doi.org/10.1021/JA00841A015
doi: 10.1021/JA00841A015 pubmed: 237050
Kim IB, Dunkhorst A, Gilbert J, Bunz UHF (2005) Sensing of lead ions by a carboxylate-substituted PPE: multivalency effects. Macromolecules 38:4560–4562. https://doi.org/10.1021/MA050595O
doi: 10.1021/MA050595O
Beqa L, Singh AK, Khan SA et al (2011) Gold nanoparticle-based simple colorimetric and ultrasensitive dynamic light scattering assay for the selective detection of Pb(II) from paints, plastics, and water samples. ACS Appl Mater Interfaces 3:668–673. https://doi.org/10.1021/AM101118H
doi: 10.1021/AM101118H pubmed: 21306127
Parsons R (1990) Electrical double layer: recent experimental and theoretical developments. Chem Rev 90:813–826. https://doi.org/10.1021/CR00103A008
doi: 10.1021/CR00103A008
Zhang J, Qi H, Wu JJ et al (2024) Disposable peptidoglycan-specific biosensor for noninvasive real-time detection of broad-spectrum gram-positive bacteria in exhaled breath condensates. Anal Chem. https://doi.org/10.1021/acs.analchem.4c00059
doi: 10.1021/acs.analchem.4c00059 pubmed: 39454136 pmcid: 11503514
Jiang Y, Huang J, Wu J, Eda S (2022) A rapid, sensitive, and simple-to-use biosensor for on-site detection of attomolar level microRNA biomarkers from serum extracellular vesicles. Sensors Actuators B Chem 369:132314. https://doi.org/10.1016/j.snb.2022.132314
doi: 10.1016/j.snb.2022.132314
Mirzajani H, Cheng C, Vafaie RH et al (2022) Optimization of ACEK-enhanced, PCB-based biosensor for highly sensitive and rapid detection of bisphenol a in low resource settings. Biosens Bioelectron 196:113745. https://doi.org/10.1016/J.BIOS.2021.113745
doi: 10.1016/J.BIOS.2021.113745 pubmed: 34753078
Wu J (2008) Interactions of electrical fields with fluids:laboratory-on-a-chip applications. IET Nanobiotechnol 2:14–27. https://doi.org/10.1049/iet-nbt:20070023
doi: 10.1049/iet-nbt:20070023 pubmed: 18298196
Amin N, Chen J, He Q et al (2024) Ultra-sensitive and rapid detection of perfluorooctanesulfonic acid by a capacitive molecularly-imprinted-polymer sensor integrated with AC electrokinetic acceleration. Sensors Actuators B Chem 420:136464. https://doi.org/10.1016/J.SNB.2024.136464
doi: 10.1016/J.SNB.2024.136464
Mozaffari SA, Rahmanian R, Abedi M, Amoli HS (2014) Urea impedimetric biosensor based on reactive RF magnetron sputtered zinc oxide nanoporous transducer. Electrochim Acta 146:538–547. https://doi.org/10.1016/j.electacta.2014.08.105
doi: 10.1016/j.electacta.2014.08.105
Hashemi P, Afkhami A, Bagheri H et al (2017) Fabrication of a novel impedimetric sensor based on l-Cysteine/Cu(II) modified gold electrode for sensitive determination of ampyra. Anal Chim Acta 984:185–192. https://doi.org/10.1016/j.aca.2017.06.038
doi: 10.1016/j.aca.2017.06.038 pubmed: 28843562
Kashefi-Kheyrabadi L, Mehrgardi MA, Wiechec E et al (2014) Ultrasensitive detection of human liver hepatocellular carcinoma cells using a label-free aptasensor. Anal Chem 86:4956–4960. https://doi.org/10.1021/ac500375p
doi: 10.1021/ac500375p pubmed: 24754473
Oueslati R, Cheng C, Wu J, Chen J (2018) Highly sensitive and specific on-site detection of serum cocaine by a low cost aptasensor. Biosens Bioelectron 108:103–108. https://doi.org/10.1016/j.bios.2018.02.055
doi: 10.1016/j.bios.2018.02.055 pubmed: 29524683
Parr RG, Pearson RG (1983) Absolute hardness: companion parameter to absolute electronegativity. J Am Chem Soc 105:7512–7516. https://doi.org/10.1021/JA00364A005
doi: 10.1021/JA00364A005
Xu H, Xu DC, Wang Y (2017) Natural indices for the chemical hardness/softness of metal cations and ligands. ACS Omega 2:7185–7193. https://doi.org/10.1021/acsomega.7b01039
doi: 10.1021/acsomega.7b01039 pubmed: 31457297 pmcid: 6645321
Cheng C, Wang S, Wu J et al (2016) Bisphenol A sensors on polyimide fabricated by laser direct writing for onsite river water monitoring at attomolar concentration. ACS Appl Mater Interfaces 8:17784–17792. https://doi.org/10.1021/acsami.6b03743
doi: 10.1021/acsami.6b03743 pubmed: 27351908

Auteurs

Niloufar Amin (N)

Department of Electrical Engineering and Computer Science, The University of Tennessee, Knoxville, TN, 37996, USA.

Jiangang Chen (J)

Department of Public Health, The University of Tennessee, Knoxville, TN, 37996, USA.

Qing Cao (Q)

Department of Electrical Engineering and Computer Science, The University of Tennessee, Knoxville, TN, 37996, USA.

Haochen Qi (H)

Department of Electrical Engineering and Computer Science, The University of Tennessee, Knoxville, TN, 37996, USA.
College of Electrical and Electronic Engineering, Wenzhou University, Wenzhou, 325035, Zhejiang, China.

Jian Zhang (J)

College of Electrical and Electronic Engineering, Wenzhou University, Wenzhou, 325035, Zhejiang, China.

Qiang He (Q)

Department of Environmental and Civil Engineering, The University of Tennessee, Knoxville, TN, 37996, USA.

Jie Jayne Wu (JJ)

Department of Electrical Engineering and Computer Science, The University of Tennessee, Knoxville, TN, 37996, USA. jaynewu@utk.edu.

Articles similaires

Humans Hyaluronic Acid Osteoarthritis, Hip Female Middle Aged

High-throughput Bronchus-on-a-Chip system for modeling the human bronchus.

Akina Mori, Marjolein Vermeer, Lenie J van den Broek et al.
1.00
Humans Bronchi Lab-On-A-Chip Devices Epithelial Cells Goblet Cells
Nigeria Environmental Monitoring Solid Waste Waste Disposal Facilities Refuse Disposal
Humans Electroencephalography Female Male Middle Aged

Classifications MeSH