Low-cost portable sensor for rapid and sensitive detection of Pb
AC electrokinetic
Capacitive sensing
GSH self-assembled monolayer
On-site detection
Point-of-use testing
Water quality monitoring
Journal
Mikrochimica acta
ISSN: 1436-5073
Titre abrégé: Mikrochim Acta
Pays: Austria
ID NLM: 7808782
Informations de publication
Date de publication:
30 10 2024
30 10 2024
Historique:
received:
16
07
2024
accepted:
21
10
2024
medline:
31
10
2024
pubmed:
31
10
2024
entrez:
31
10
2024
Statut:
epublish
Résumé
Lead ion (Pb
Identifiants
pubmed: 39477888
doi: 10.1007/s00604-024-06798-z
pii: 10.1007/s00604-024-06798-z
doi:
Substances chimiques
Lead
2P299V784P
Water Pollutants, Chemical
0
Gold
7440-57-5
Glutathione
GAN16C9B8O
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
718Subventions
Organisme : National Institute of Food and Agriculture
ID : 2023-67021-40613
Organisme : National Institute of Food and Agriculture
ID : 2023-67021-40613
Organisme : National Institute of Food and Agriculture
ID : 2023-67021-40613
Informations de copyright
© 2024. The Author(s), under exclusive licence to Springer-Verlag GmbH Austria, part of Springer Nature.
Références
World Health Organization (WHO) (2023) World health statistics 2023: monitoring health for the SDGs, sustainable development goals. WHO, Geneva, Switzerland. Available at: https://www.who.int/publications/i/item/9789240069736
Merkoçi A, Yang Q, Nagar B et al (2021) Development of a heavy metal sensing boat for automatic analysis in natural waters utilizing anodic stripping voltammetry. ACS ES T Water 1:30. https://doi.org/10.1021/ACSESTWATER.1C00192
doi: 10.1021/ACSESTWATER.1C00192
Zeng J, Han G, Hu M et al (2021) Geochemistry of dissolved heavy metals in upper reaches of the three gorges reservoir of yangtze riverwatershed during the flood season. Water (Switzerland) 13:2078. https://doi.org/10.3390/W13152078/S1
doi: 10.3390/W13152078/S1
Meng J, Huang J, Oueslati R et al (2021) A single-step DNAzyme sensor for ultra-sensitive and rapid detection of Pb2+ ions. Electrochim Acta 368:137551. https://doi.org/10.1016/J.ELECTACTA.2020.137551
doi: 10.1016/J.ELECTACTA.2020.137551
Le WL, Wen Y, Li L et al (2018) Sensitive and label-free electrochemical lead ion biosensor based on a DNAzyme triggered G-quadruplex/hemin conformation. Biosens Bioelectron 115:91–96. https://doi.org/10.1016/J.BIOS.2018.04.054
doi: 10.1016/J.BIOS.2018.04.054
Federal Register :: National Primary Drinking Water Regulations for Lead and Copper. https://www.federalregister.gov/documents/2000/01/12/00-3/national-primary-drinking-water-regulations-for-lead-and-copper . Accessed 10 Jul 2024.
Ghaedi M, Ahmadi F, Shokrollahi A (2007) Simultaneous preconcentration and determination of copper, nickel, cobalt and lead ions content by flame atomic absorption spectrometry. J Hazard Mater 142:272–278. https://doi.org/10.1016/J.JHAZMAT.2006.08.012
doi: 10.1016/J.JHAZMAT.2006.08.012
pubmed: 17011124
Shih TT, Hsieh CC, Luo YT et al (2016) A high-throughput solid-phase extraction microchip combined with inductively coupled plasma-mass spectrometry for rapid determination of trace heavy metals in natural water. Anal Chim Acta 916:24–32. https://doi.org/10.1016/J.ACA.2016.02.027
doi: 10.1016/J.ACA.2016.02.027
pubmed: 27016435
Smirnova SV, Samarina TO, Ilin DV, Pletnev IV (2018) Multielement determination of trace heavy metals in water by microwave-induced plasma atomic emission spectrometry after extraction in unconventional single-salt aqueous biphasic system. Anal Chem 90:6323–6331. https://doi.org/10.1021/ACS.ANALCHEM.8B01136
doi: 10.1021/ACS.ANALCHEM.8B01136
pubmed: 29668252
Bansod BK, Kumar T, Thakur R et al (2017) A review on various electrochemical techniques for heavy metal ions detection with different sensing platforms. Biosens Bioelectron 94:443–455. https://doi.org/10.1016/J.BIOS.2017.03.031
doi: 10.1016/J.BIOS.2017.03.031
pubmed: 28340464
Amin N, Almasi A, Ozer T et al (2023) Recent advances of optical biosensors in veterinary medicine: moving towards the point of care applications. Curr Top Med Chem 23:2242–2265. https://doi.org/10.2174/1568026623666230718163613
doi: 10.2174/1568026623666230718163613
pubmed: 37464828
Gao C, Huang XJ (2013) Voltammetric determination of mercury(II). TrAC Trends Anal Chem 51:1–12. https://doi.org/10.1016/J.TRAC.2013.05.010
doi: 10.1016/J.TRAC.2013.05.010
Hwang JH, Wang X, Zhao D et al (2019) A novel nanoporous bismuth electrode sensor for in situ heavy metal detection. Electrochim Acta 298:440–448. https://doi.org/10.1016/J.ELECTACTA.2018.12.122
doi: 10.1016/J.ELECTACTA.2018.12.122
Finšgar M, Kovačec L (2020) Copper-bismuth-film in situ electrodes for heavy metal detection. Microchem J 154:104635. https://doi.org/10.1016/J.MICROC.2020.104635
doi: 10.1016/J.MICROC.2020.104635
Zheng J, Rahim MA, Tang J et al (2022) Post-transition metal electrodes for sensing heavy metal ions by stripping voltammetry. Adv Mater Technol 7:2100760. https://doi.org/10.1002/ADMT.202100760
doi: 10.1002/ADMT.202100760
Shamkhalichenar H, Bueche CJ, Choi JW (2020) Printed circuit board (PCB) technology for electrochemical sensors and sensing platforms. Biosens 10:159. https://doi.org/10.3390/BIOS10110159
doi: 10.3390/BIOS10110159
Toldrà A, Ainla A, Khaliliazar S et al (2022) Portable electroanalytical nucleic acid amplification tests using printed circuit boards and open-source electronics. Analyst 147:4249–4256. https://doi.org/10.1039/D2AN00923D
doi: 10.1039/D2AN00923D
pubmed: 35993403
pmcid: 9511072
Paydar S, Feizi F, Shamsipur M et al (2022) An ideal ratiometric fluorescent probe provided by the surface modification of carbon dots for the determination of Pb2+. Sensors Actuators B Chem 369:132243. https://doi.org/10.1016/J.SNB.2022.132243
doi: 10.1016/J.SNB.2022.132243
Chen J, Zhu Y, Zhang Y (2016) Glutathione-capped Mn-doped ZnS quantum dots as a room-temperature phosphorescence sensor for the detection of Pb2+ ions. Spectrochim Acta Part A Mol Biomol Spectrosc 164:98–102. https://doi.org/10.1016/J.SAA.2016.04.014
doi: 10.1016/J.SAA.2016.04.014
Zhang J, Sun X, Wu J (2019) Heavy metal ion detection platforms based on a glutathione probe: a mini review. Appl Sci 9:489. https://doi.org/10.3390/APP9030489
doi: 10.3390/APP9030489
Dolati S, Ramezani M, Abnous K, Taghdisi SM (2017) Recent nucleic acid based biosensors for Pb2+ detection. Sens Actuators B Chem 246:864–878. https://doi.org/10.1016/J.SNB.2017.02.118
doi: 10.1016/J.SNB.2017.02.118
Amin N, Afkhami A, Hosseinzadeh L et al (2020) Ratiometric bioassay and visualization of dopamine β-hydroxylase in brain cells utilizing a nanohybrid fluorescence probe. Anal Chim Acta 1105:187–196. https://doi.org/10.1016/J.ACA.2020.01.046
doi: 10.1016/J.ACA.2020.01.046
pubmed: 32138918
Karunakaran C, Madasamy T, Sethy NK (2015) Enzymatic biosensors. Biosens Bioelectron 133–204. https://doi.org/10.1016/B978-0-12-803100-1.00003-7
Zhang J, Zhang Y, Wu J et al (2021) Real-time Cd2+ detection at sub-femtomolar level in various liquid media by an aptasensor integrated with microfluidic enrichment. Sens Actuators B Chem 329:129282. https://doi.org/10.1016/J.SNB.2020.129282
doi: 10.1016/J.SNB.2020.129282
Oliveira VHB, Rechotnek F, da Silva EP et al (2020) A sensitive electrochemical sensor for Pb2+ ions based on ZnO nanofibers functionalized by L-cysteine. J Mol Liq 309:113041. https://doi.org/10.1016/J.MOLLIQ.2020.113041
doi: 10.1016/J.MOLLIQ.2020.113041
Rabenstein DL, Fairhurst MT (1975) Nuclear magnetic resonance studies of the solution chemistry of metal complexes. XI. Binding of Methylmercury by Sulfhydryl-Containing Amino Acids and by Glutathione. J Am Chem Soc 97:2086–2092. https://doi.org/10.1021/JA00841A015
doi: 10.1021/JA00841A015
pubmed: 237050
Kim IB, Dunkhorst A, Gilbert J, Bunz UHF (2005) Sensing of lead ions by a carboxylate-substituted PPE: multivalency effects. Macromolecules 38:4560–4562. https://doi.org/10.1021/MA050595O
doi: 10.1021/MA050595O
Beqa L, Singh AK, Khan SA et al (2011) Gold nanoparticle-based simple colorimetric and ultrasensitive dynamic light scattering assay for the selective detection of Pb(II) from paints, plastics, and water samples. ACS Appl Mater Interfaces 3:668–673. https://doi.org/10.1021/AM101118H
doi: 10.1021/AM101118H
pubmed: 21306127
Parsons R (1990) Electrical double layer: recent experimental and theoretical developments. Chem Rev 90:813–826. https://doi.org/10.1021/CR00103A008
doi: 10.1021/CR00103A008
Zhang J, Qi H, Wu JJ et al (2024) Disposable peptidoglycan-specific biosensor for noninvasive real-time detection of broad-spectrum gram-positive bacteria in exhaled breath condensates. Anal Chem. https://doi.org/10.1021/acs.analchem.4c00059
doi: 10.1021/acs.analchem.4c00059
pubmed: 39454136
pmcid: 11503514
Jiang Y, Huang J, Wu J, Eda S (2022) A rapid, sensitive, and simple-to-use biosensor for on-site detection of attomolar level microRNA biomarkers from serum extracellular vesicles. Sensors Actuators B Chem 369:132314. https://doi.org/10.1016/j.snb.2022.132314
doi: 10.1016/j.snb.2022.132314
Mirzajani H, Cheng C, Vafaie RH et al (2022) Optimization of ACEK-enhanced, PCB-based biosensor for highly sensitive and rapid detection of bisphenol a in low resource settings. Biosens Bioelectron 196:113745. https://doi.org/10.1016/J.BIOS.2021.113745
doi: 10.1016/J.BIOS.2021.113745
pubmed: 34753078
Wu J (2008) Interactions of electrical fields with fluids:laboratory-on-a-chip applications. IET Nanobiotechnol 2:14–27. https://doi.org/10.1049/iet-nbt:20070023
doi: 10.1049/iet-nbt:20070023
pubmed: 18298196
Amin N, Chen J, He Q et al (2024) Ultra-sensitive and rapid detection of perfluorooctanesulfonic acid by a capacitive molecularly-imprinted-polymer sensor integrated with AC electrokinetic acceleration. Sensors Actuators B Chem 420:136464. https://doi.org/10.1016/J.SNB.2024.136464
doi: 10.1016/J.SNB.2024.136464
Mozaffari SA, Rahmanian R, Abedi M, Amoli HS (2014) Urea impedimetric biosensor based on reactive RF magnetron sputtered zinc oxide nanoporous transducer. Electrochim Acta 146:538–547. https://doi.org/10.1016/j.electacta.2014.08.105
doi: 10.1016/j.electacta.2014.08.105
Hashemi P, Afkhami A, Bagheri H et al (2017) Fabrication of a novel impedimetric sensor based on l-Cysteine/Cu(II) modified gold electrode for sensitive determination of ampyra. Anal Chim Acta 984:185–192. https://doi.org/10.1016/j.aca.2017.06.038
doi: 10.1016/j.aca.2017.06.038
pubmed: 28843562
Kashefi-Kheyrabadi L, Mehrgardi MA, Wiechec E et al (2014) Ultrasensitive detection of human liver hepatocellular carcinoma cells using a label-free aptasensor. Anal Chem 86:4956–4960. https://doi.org/10.1021/ac500375p
doi: 10.1021/ac500375p
pubmed: 24754473
Oueslati R, Cheng C, Wu J, Chen J (2018) Highly sensitive and specific on-site detection of serum cocaine by a low cost aptasensor. Biosens Bioelectron 108:103–108. https://doi.org/10.1016/j.bios.2018.02.055
doi: 10.1016/j.bios.2018.02.055
pubmed: 29524683
Parr RG, Pearson RG (1983) Absolute hardness: companion parameter to absolute electronegativity. J Am Chem Soc 105:7512–7516. https://doi.org/10.1021/JA00364A005
doi: 10.1021/JA00364A005
Xu H, Xu DC, Wang Y (2017) Natural indices for the chemical hardness/softness of metal cations and ligands. ACS Omega 2:7185–7193. https://doi.org/10.1021/acsomega.7b01039
doi: 10.1021/acsomega.7b01039
pubmed: 31457297
pmcid: 6645321
Cheng C, Wang S, Wu J et al (2016) Bisphenol A sensors on polyimide fabricated by laser direct writing for onsite river water monitoring at attomolar concentration. ACS Appl Mater Interfaces 8:17784–17792. https://doi.org/10.1021/acsami.6b03743
doi: 10.1021/acsami.6b03743
pubmed: 27351908