Additively Manufactured Surgical Implant Guides: A Review.


Journal

Journal of prosthodontics : official journal of the American College of Prosthodontists
ISSN: 1532-849X
Titre abrégé: J Prosthodont
Pays: United States
ID NLM: 9301275

Informations de publication

Date de publication:
Mar 2022
Historique:
accepted: 25 12 2021
entrez: 21 3 2022
pubmed: 22 3 2022
medline: 24 3 2022
Statut: ppublish

Résumé

Static computer assisted implant surgery (s-CAIS) is an integral part of the digital workflow in implant dentistry and provides the link between the virtual planning environment and surgical field. The accuracy of s-CAIS is influenced by many cumulative factors including the fit of the template which is related to the manufacturing process. This critical review provides an overview of the current research on additively manufactured surgical implant guides.

Identifiants

pubmed: 35313020
doi: 10.1111/jopr.13476
doi:

Substances chimiques

Dental Implants 0

Types de publication

Journal Article Review

Langues

eng

Pagination

38-46

Informations de copyright

© 2022 by the American College of Prosthodontists.

Références

Wismeijer D, Joda T, Flügge T, et al: Group 5 ITI consensus report: digital technologies. Clin Oral Implants Res 2018;29:436-442
Molitch-Hou M: Overview of additive manufacturing process. Additive Manufacturing Materials, Processes, Quantifications and Applications, Elsevier, 2018, pp 1-38. https://doi.org/10.1016/B978-0-12-812155-9.00001-3
Jung RE, Schneider D, Ganeles J, et al: Computer technology applications in surgical implant dentistry: a systematic review. Database of Abstracts of Reviews of Effects (DARE): Quality-assessed Reviews [Internet]2009; York (UK): Centre for Reviews and Dissemination (UK) 2009, 1995. Available from: https://www.ncbi.nlm.nih.gov/books/NBK78185/
van Steenberghe D, Glauser R, Blombäck U, et al: A computed tomographic scan-derived customized surgical template and fixed prosthesis for flapless surgery and immediate loading of implants in fully edentulous maxillae: a prospective multicenter study. Clin Implant Dent Relat Res 2005;7:s111-s120. https://doi.org/10.1111/j.1708-8208.2005.tb00083.x
Vercruyssen M, Jacobs R, Van Assche N, et al: The use of CT scan based planning for oral rehabilitation by means of implants and its transfer to the surgical field: a critical review on accuracy. J Oral Rehabil 2008;35:454-474
van Steenberghe D, Naert I, Andersson M, et al: A custom template and definitive prosthesis allowing immediate implant loading in the maxilla: a clinical report. Int J Oral Maxillofac Implants 2002;17
Orentlicher G, Goldsmith D, Abboud M: Computer-guided planning and placement of dental implants. Atlas Oral Maxillofac Surg Clin N Am 2012;20:53-79
Nickenig H-J, Wichmann M, Hamel J, et al: Evaluation of the difference in accuracy between implant placement by virtual planning data and surgical guide templates versus the conventional free-hand method-a combined in vivo-in vitro technique using cone-beam CT (Part II). J Craniomaxillofac Surg 2010;38:488-493. https://doi.org/10.1016/j.jcms.2009.10.023
Vermeulen J: The accuracy of implant placement by experienced surgeons: guided vs freehand approach in a simulated plastic model. Int J Oral Maxillofac Implants 2017;32
Herschdorfer L, Negreiros WM, Gallucci GO, et al: Comparison of the accuracy of implants placed with CAD-CAM surgical templates manufactured with various 3D printers: an in vitro study. J Prosthet Dent 2020
Koch GK, James B, Gallucci GO, et al: Surgical template fabrication using cost-effective 3D printers. Int J Prosthodont 2019;32:97-100
Revilla-León M, Sadeghpour M, Özcan M: An update on applications of 3D printing technologies used for processing polymers used in implant dentistry. Odontology 2020;108:331-338
Cristache CM, Totu EE: 3D printing-processed polymers for dental applications. In: Gutiérrez TJ (eds). Reactive and Functional Polymers Volume Three. Springer, Cham, 2021, pp 141-164. https://link.springer.com/chapter/10.1007/978-3-030-50457-1_7
Joda T, Matthisson L, Zitzmann NU: Impact of aging on the accuracy of 3D-printed dental models: an in vitro investigation. J Clin Med 2020;9:1436
Prpić V, Schauperl Z, Ćatić A, et al: Comparison of mechanical properties of 3D-printed, CAD/CAM, and conventional denture base materials. J Prosthodont 2020;29:524-528
Tahayeri A, Morgan M, Fugolin AP, et al: 3D printed versus conventionally cured provisional crown and bridge dental materials. Dent Mater 2018;34:192-200
Parhi R, Jena GK: An updated review on application of 3D printing in fabricating pharmaceutical dosage forms. Drug Deliv Translat Res 2021:1-35
Wedekind L, Güth J-F, Schweiger J, et al: Elution behavior of a 3D-printed, milled and conventional resin-based occlusal splint material. Dent Mater 2021;37:701-710
Rogers HB, Zhou LT, Kusuhara A, et al: Dental resins used in 3D printing technologies release ovo-toxic leachates. Chemosphere 2021;270:129003
Kurzmann C, Janjić K, Shokoohi-Tabrizi H, et al: Evaluation of resins for stereolithographic 3D-printed surgical guides: the response of L929 cells and human gingival fibroblasts. Biomed Res Int 2017;2017
Alifui-Segbaya F, Varma S, Lieschke GJ, et al: Biocompatibility of photopolymers in 3D printing. 3D Print Add Manufact 2017;4:185-191. https://doi.org/10.1089/3dp.2017.0064
Ng WL, Lee JM, Zhou M, et al: Vat polymerization-based bioprinting-process, materials, applications and regulatory challenges. Biofabrication 2020;12:022001
Kumar SM: Cytotoxicity of 3D Printed Materials: An In Vitro study. Sri Ramakrishna Dental College and Hospital, 2019. https://www.semanticscholar.org/paper/Cytotoxicity-of-3D-Printed-Materials%3A-An-In-Vitro-Kumar/66a1b505e12155cf45a6ebf38a51784ce5846b2c
ISO 10993-1:2009: Biological evaluation of medical devices . Part 1: Evaluation and testing within a risk management process. ISO. 2009. https://www.iso.org/standard/44908.html
Stansbury JW, Idacavage MJ: 3D printing with polymers: challenges among expanding options and opportunities. Dent Mater 2016;32:54-64
Kurfess T, Cass WJ: Rethinking additive manufacturing and intellectual property protection. Res-Technol Manag 2014;57:35-42
Revilla-León M, Meyers MJ, Zandinejad A, et al: A review on chemical composition, mechanical properties, and manufacturing work flow of additively manufactured current polymers for interim dental restorations. J Esthet Restor Dent 2019;31:51-57
Wang X, Jiang M, Zhou Z, et al: 3D printing of polymer matrix composites: A review and prospective. Compos Part B: Eng 2017;110:442-458. https://doi.org/10.1016/j.compositesb.2016.11.034
Goh GD, Yap YL, Tan HKJ, et al: Process-structure-properties in polymer additive manufacturing via material extrusion: a review. Crit Rev Solid State Mater Sci 2020;45:113-133. https://doi.org/10.1080/10408436.2018.1549977
Jockusch J, Özcan M: Additive manufacturing of dental polymers: an overview on processes, materials and applications. Dent Mater J 2020:2019-2123
Methani MM, Cesar PF, de Paula Miranda RB, et al. Additive manufacturing in dentistry: current technologies, clinical applications, and limitations. Curr Oral Health Rep 2020:1-8. https://doi.org/10.1007/s40496-020-00288-w
Sharma N, Cao S, Msallem B, et al: Effects of steam sterilization on 3D printed biocompatible resin materials for surgical guides-an accuracy assessment study. J Clin Med 2020;9:1506
Sennhenn-Kirchner S, Weustermann S, Mergeryan H, et al: Preoperative sterilization and disinfection of drill guide templates. Clin Oral Investig 2008;12:179-187
Török G, Gombocz P, Bognár E, et al: Effects of disinfection and sterilization on the dimensional changes and mechanical properties of 3D printed surgical guides for implant therapy-pilot study. BMC Oral Health 2020;20:1-12. https://doi.org/10.1186/s12903-020-1005-0
Marei HF, Alshaia A, Alarifi S, et al: Effect of steam heat sterilization on the accuracy of 3D printed surgical guides. Implant Dent 2019;28:372-377
Ganz SD: Three-dimensional imaging and guided surgery for dental implants. Dent Clin 2015;59:265-290
Tapiea L, Lebonb N, Mawussic B, et al: Understanding dental CAD/CAM for restorations-the digital workflow from a mechanical engineering viewpoint Dentale CAD/CAM-Systeme zum Zahnersatz verstehen-der digitale Workflow aus Sicht des Maschinenbaus. Int J Comput Dent 2015;18:21-44
Flügge T, Derksen W, Te Poel J, et al: Registration of cone beam computed tomography data and intraoral surface scans-a prerequisite for guided implant surgery with CAD/CAM drilling guides. Clin Oral Implants Res 2017;28:1113-1118
Derksen W, Wismeijer D, Flügge T, et al: The accuracy of computer-guided implant surgery with tooth-supported, digitally designed drill guides based on CBCT and intraoral scanning. A prospective cohort study. Clin Oral Implants Res 2019;30:1005-1015
Ting-shu S, Jian S: Intraoral digital impression technique: a review. J Prosthodont 2015;24:313-321
De Vico G, Ferraris F, Arcuri L, et al: A novel workflow for computer guided implant surgery matching digital dental casts and CBCT scan. Oral Implantol 2016;9:33
Lin J, Lin Z, Zheng Z: Case report: fabrication of a dental implant guide based on tetrahedron positioning technology. BMC Oral Health 2021;21:1-7
Schwindling FS, Juerchott A, Boehm S, et al: Three-dimensional accuracy of partially guided implant surgery based on dental magnetic resonance imaging. Clin Oral Implants Res 2021;32:1218-1227
Rubayo DD, Phasuk K, Vickery JM, et al: Influences of build angle on the accuracy, printing time, and material consumption of additively manufactured surgical templates. J Prosthet Dent 2021;126:658-663
Alharbi N, Osman R: Does build angle have an influence on surface roughness of anterior 3D-printed restorations? An in-vitro study. Int J Prosthodont 2021
Ko J, Bloomstein RD, Briss D, et al: Effect of build angle and layer height on the accuracy of 3-dimensional printed dental models. Am J Orthod Dentofacial Orthop 2021;160:451-458. e452
Ryu J-E, Kim Y-L, Kong H-J, et al: Marginal and internal fit of 3D printed provisional crowns according to build directions. J Adv Prosthodont 2020;12:225
Alharbi N, Osman R, Wismeijer D: Effects of build direction on the mechanical properties of 3D-printed complete coverage interim dental restorations. J Prosthet Dent 2016;115:760-767
Alharbi N, Wismeijer D, Osman RB: Additive manufacturing techniques in prosthodontics: where do we currently stand? A critical review. Int J Prosthodont 2017;30
Unkovskiy A, Bui PH-B, Schille C, et al: Objects build orientation, positioning, and curing influence dimensional accuracy and flexural properties of stereolithographically printed resin. Dent Mater 2018;34:e324-e333
Kim D-Y, Jeon J-H, Kim J-H, et al: Reproducibility of different arrangement of resin copings by dental microstereolithography: evaluating the marginal discrepancy of resin copings. J Prosthet Dent 2017;117:260-265
Kim D, Shim J-S, Lee D, et al: Effects of post-curing time on the mechanical and color properties of three-dimensional printed crown and bridge materials. Polymers (Basel) 2020;12:2762
Lee B-I, You S-G, You S-M, et al: Evaluating the accuracy (trueness and precision) of interim crowns manufactured using digital light processing according to post-curing time: an in vitro study. J Adv Prosthodont 2021;13:89
Taneva I, Uzunov T: Influence of post-polymerization processing on the mechanical characteristics of 3D-printed occlusal splints. J Phys. IOP Publishing, 2020.
Msallem B, Sharma N, Cao S, et al: Evaluation of the dimensional accuracy of 3D-printed anatomical mandibular models using FFF, SLA, SLS, MJ, and BJ printing technology. J Clin Med 2020;9:817
Mostafavi D, Methani MM, Piedra-Cascón W, et al: Influence of the rinsing postprocessing procedures on the manufacturing accuracy of vat-polymerized dental model material. J Prosthodont 2021;30:610-616
Dawood A, Marti BM, Sauret-Jackson V, et al: 3D printing in dentistry. Br Dent J 2015;219:521-529
Balli J, Kumpaty S, Anewenter V: Continuous liquid interface production of 3D objects: an unconventional technology and its challenges and opportunities. ASME Int Mech Eng Cong Exposit American Society of Mechanical Engineers, 2017.
Daminabo SC, Goel S, Grammatikos SA, et al: Fused deposition modeling-based additive manufacturing (3D printing): techniques for polymer material systems. Mater Today Chem 2020;16:100248. https://doi.org/10.1016/j.mtchem.2020.100248
Gülcan O, Günaydın K, Tamer A: The state of the art of material jetting-a critical review. Polymers (Basel) 2021;13:2829
Revilla-León M, Özcan M: Additive manufacturing technologies used for processing polymers: current status and potential application in prosthetic dentistry. J Prosthodont 2019;28:146-158
Salcedo E, Baek D, Berndt A, et al: Simulation and validation of three dimension functionally graded materials by material jetting. Addit Manuf 2018;22:351-359
Chen L, Lin W-S, Polido WD, et al: Accuracy, reproducibility, and dimensional stability of additively manufactured surgical templates. J Prosthet Dent 2019;122:309-314
Revilla-León M, Özcan M: Additive manufacturing technologies used for 3D metal printing in dentistry. Curr Oral Health Rep 2017;4:201-208. https://doi.org/10.1007/s40496-017-0152-0
Lin W-S, Yang C-C, Polido WD, et al: CAD-CAM cobalt-chromium surgical template for static computer-aided implant surgery: a dental technique. J Prosthet Dent 2020;123:42-44
Joda T, Derksen W, Wittneben JG, et al: Static computer-aided implant surgery (s-CAIS) analysing patient-reported outcome measures (PROMs), economics and surgical complications: a systematic review. Clin Oral Implants Res 2018;29:359-373
Herschdorfer L, Negreiros WM, Gallucci GO, et al: Comparison of the accuracy of implants placed with CAD-CAM surgical templates manufactured with various 3D printers: an in vitro study. J Prosthet Dent 2021;125:905-910
Kessler A, Hickel R, Reymus M: 3D printing in dentistry-state of the art. Oper Dent 2020;45:30-40
Kim T, Lee S, Kim GB, et al: Accuracy of a simplified 3D-printed implant surgical guide. J Prosthet Dent 2020;124:195-201. e192
Yeung M, Abdulmajeed A, Carrico CK, et al: Accuracy and precision of 3D-printed implant surgical guides with different implant systems: an in vitro study. J Prosthet Dent 2020;123:821-828
Turbush SK, Turkyilmaz I: Accuracy of three different types of stereolithographic surgical guide in implant placement: an in vitro study. J Prosthet Dent 2012;108:181-188
Ozan O, Turkyilmaz I, Ersoy AE, et al: Clinical accuracy of 3 different types of computed tomography-derived stereolithographic surgical guides in implant placement. J Oral Maxillofac Surg 2009;67:394-401
Raico Gallardo YN, da Silva-Olivio IRT, Mukai E, et al: Accuracy comparison of guided surgery for dental implants according to the tissue of support: a systematic review and meta-analysis. Clin Oral Implants Res 2017;28:602-612
Van Assche N, Vercruyssen M, Coucke W, et al: Accuracy of computer-aided implant placement. Clin Oral Implants Res 2012;23:112-123
Schneider D, Marquardt P, Zwahlen M, et al: A systematic review on the accuracy and the clinical outcome of computer-guided template-based implant dentistry. Clin Oral Implants Res 2009;20:73-86
Arisan V, Karabuda CZ, Özdemir T: Implant surgery using bone-and mucosa-supported stereolithographic guides in totally edentulous jaws: surgical and post-operative outcomes of computer-aided vs. standard techniques. Clin Oral Implants Res 2010;21:980-988. https://doi.org/10.1111/j.1600-0501.2010.01957.x
Kühl S, Zürcher S, Mahid T, et al: Accuracy of full guided vs. half-guided implant surgery. Clin Oral Implants Res 2013;24:763-769
Behneke A, Burwinkel M, Behneke N: Factors influencing transfer accuracy of cone beam CT-derived template-based implant placement. Clin Oral Implants Res 2012;23:416-423
Tahmaseb A, Wismeijer D, Coucke W, et al: Computer technology applications in surgical implant dentistry: a systematic review. International Journal of Oral & Maxillofacial Implants 2014;29
Cassetta M, Di Mambro A, Giansanti M, et al: How does an error in positioning the template affect the accuracy of implants inserted using a single fixed mucosa-supported stereolithographic surgical guide? Int J Oral Maxillofac Surg 2014;43:85-92
Abduo J, Lau D: Effect of manufacturing technique on the accuracy of surgical guides for static computer-aided implant surgery. Int J Oral Maxillofac Implants 2020;35
Lin C-C, Ishikawa M, Maida T, et al: Stereolithographic surgical guide with a combination of tooth and bone support: accuracy of guided implant surgery in distal extension situation. J Clin Med. 2020;9:709
Lin C-C, Wu C-Z, Huang M-S, et al: Fully digital workflow for planning static guided implant surgery: a prospective accuracy study. J Clin Med. 2020;9:980
Esmaeili F, Johari M, Haddadi P: Beam hardening artifacts by dental implants: comparison of cone-beam and 64-slice computed tomography scanners. Dent Res J (Isfahan) 2013;10:376
Knechtle N, Wiedemeier D, Mehl A, et al: Accuracy of digital complete-arch, multi-implant scans made in the edentulous jaw with gingival movement simulation: an in vitro study. J Prosthet Dent 2021
Sommacal B, Savic M, Filippi A, et al: Evaluation of two 3D printers for guided implant surgery. Int J Oral Maxillofac Implants 2018;33
Dalal N, Ammoun R, Abdulmajeed AA, et al: Intaglio surface dimension and guide tube deviations of implant surgical guides influenced by printing layer thickness and angulation setting. J Prosthodont 2020;29:161-165
Ammoun R, Dalal N, Abdulmajeed AA, et al: Effects of two postprocessing methods onto surface dimension of in-office fabricated stereolithographic implant surgical guides. J Prosthodont 2021;30:71-75
Sun TC, Negreiros WM, Jamjoom F, et al: Application of 3D-printed implant-osseous-membrane guide for one-stage sinus floor elevation: a clinical report. Int J Oral Maxillofac Implants 2020;35:1203-1208
Goodacre BJ, Swamidass RS, Lozada J, et al: A 3D-printed guide for lateral approach sinus grafting: a dental technique. J Prosthet Dent 2018;119:897-901
C AJdM TN AD, Burgoa S, et al: Fully digital workflow with magnetically connected guides for full-arch implant rehabilitation following guided alveolar ridge reduction. J Prosthodont 2020;29:272-276
Papaspyridakos P, De Souza A, Bathija A, et al: Complete digital workflow for mandibular full-arch implant rehabilitation in 3 appointments. J Prosthodont 2021

Auteurs

Tom Elliott (T)

Division of Oral Restorative and Rehabilitative Sciences, University of Western Australia, Perth, Western Australia.

Adam Hamilton (A)

Division of Oral Restorative and Rehabilitative Sciences, University of Western Australia, Perth, Western Australia.
Division of Regenerative and Implant Sciences, Department of Restorative Dentistry and Biomaterials Sciences, Harvard School of Dental Medicine, Boston, MA.

Neil Griseto (N)

Division of Regenerative and Implant Sciences, Department of Restorative Dentistry and Biomaterials Sciences, Harvard School of Dental Medicine, Boston, MA.

German O Gallucci (GO)

Department of Restorative Dentistry and Biomaterials Sciences, Harvard School of Dental Medicine, Boston, MA.

Articles similaires

Humans Male Femoral Fractures Surgery, Computer-Assisted Osteotomy

Effect of soft tissue thickness on accuracy of conventional and digital implant impression techniques.

Eman Mostafa Awad, Mohamed Maamoun ElSheikh, Azza Abd El Moneim El-Segai
1.00
Dental Impression Technique Humans Dental Implants Computer-Aided Design Dental Impression Materials
Humans Surgery, Computer-Assisted Operating Rooms Image Processing, Computer-Assisted Intraoperative Period
Osteogenesis, Distraction Humans Feasibility Studies Augmented Reality Mandible

Classifications MeSH