Spacer prioritization in CRISPR-Cas9 immunity is enabled by the leader RNA.


Journal

Nature microbiology
ISSN: 2058-5276
Titre abrégé: Nat Microbiol
Pays: England
ID NLM: 101674869

Informations de publication

Date de publication:
04 2022
Historique:
received: 07 11 2021
accepted: 01 02 2022
pubmed: 23 3 2022
medline: 6 4 2022
entrez: 22 3 2022
Statut: ppublish

Résumé

CRISPR-Cas systems store fragments of foreign DNA, called spacers, as immunological recordings used to combat future infections. Of the many spacers stored in a CRISPR array, the most recent are known to be prioritized for immune defence. However, the underlying mechanism remains unclear. Here we show that the leader region upstream of CRISPR arrays in CRISPR-Cas9 systems enhances CRISPR RNA (crRNA) processing from the newest spacer, prioritizing defence against the matching invader. Using the CRISPR-Cas9 system from Streptococcus pyogenes as a model, we found that the transcribed leader interacts with the conserved repeats bordering the newest spacer. The resulting interaction promotes transactivating crRNA (tracrRNA) hybridization with the second of the two repeats, accelerating crRNA processing. Accordingly, disruption of this structure reduces the abundance of the associated crRNA and immune defence against targeted plasmids and bacteriophages. Beyond the S. pyogenes system, bioinformatics analyses revealed that leader-repeat structures appear across CRISPR-Cas9 systems. CRISPR-Cas systems thus possess an RNA-based mechanism to prioritize defence against the most recently encountered invaders.

Identifiants

pubmed: 35314780
doi: 10.1038/s41564-022-01074-3
pii: 10.1038/s41564-022-01074-3
pmc: PMC7612570
mid: EMS141007
doi:

Substances chimiques

CRISPR-Associated Proteins 0
RNA 63231-63-0

Types de publication

Journal Article Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

530-541

Subventions

Organisme : European Research Council
ID : 865973
Pays : International

Informations de copyright

© 2022. The Author(s), under exclusive licence to Springer Nature Limited.

Références

Barrangou, R. et al. CRISPR provides acquired resistance against viruses in prokaryotes. Science 315, 1709–1712 (2007).
pubmed: 17379808 doi: 10.1126/science.1138140
van der Oost, J., Westra, E. R., Jackson, R. N. & Wiedenheft, B. Unravelling the structural and mechanistic basis of CRISPR-Cas systems. Nat. Rev. Microbiol. 12, 479–492 (2014).
pubmed: 24909109 pmcid: 4225775 doi: 10.1038/nrmicro3279
Jackson, S. A. et al. CRISPR-Cas: adapting to change. Science 356, eaal5056 (2017).
Bolotin, A., Quinquis, B., Sorokin, A. & Ehrlich, S. D. Clustered regularly interspaced short palindrome repeats (CRISPRs) have spacers of extrachromosomal origin. Microbiology 151, 2551–2561 (2005).
pubmed: 16079334 doi: 10.1099/mic.0.28048-0
Mojica, F. J. M., Díez-Villaseñor, C., García-Martínez, J. & Soria, E. Intervening sequences of regularly spaced prokaryotic repeats derive from foreign genetic elements. J. Mol. Evol. 60, 174–182 (2005).
pubmed: 15791728 doi: 10.1007/s00239-004-0046-3
Sorek, R., Kunin, V. & Hugenholtz, P. CRISPR—a widespread system that provides acquired resistance against phages in bacteria and archaea. Nat. Rev. Microbiol. 6, 181–186 (2008).
pubmed: 18157154 doi: 10.1038/nrmicro1793
Arslan, Z., Hermanns, V., Wurm, R., Wagner, R. & Pul, Ü. Detection and characterization of spacer integration intermediates in type I-E CRISPR–Cas system. Nucleic Acids Res. 42, 7884–7893 (2014).
pubmed: 24920831 pmcid: 4081107 doi: 10.1093/nar/gku510
Xiao, Y., Ng, S., Nam, K. H. & Ke, A. How type II CRISPR-Cas establish immunity through Cas1-Cas2-mediated spacer integration. Nature 550, 137–141 (2017).
pubmed: 28869593 pmcid: 5832332 doi: 10.1038/nature24020
McGinn, J. & Marraffini, L. A. Molecular mechanisms of CRISPR-Cas spacer acquisition. Nat. Rev. Microbiol. 17, 7–12 (2019).
pubmed: 30171202 doi: 10.1038/s41579-018-0071-7
Brouns, S. J. J. et al. Small CRISPR RNAs guide antiviral defense in prokaryotes. Science 321, 960–964 (2008).
pubmed: 18703739 pmcid: 5898235 doi: 10.1126/science.1159689
Charpentier, E., Richter, H., van der Oost, J. & White, M. F. Biogenesis pathways of RNA guides in archaeal and bacterial CRISPR-Cas adaptive immunity. FEMS Microbiol. Rev. 39, 428–441 (2015).
pubmed: 25994611 pmcid: 5965381 doi: 10.1093/femsre/fuv023
Garneau, J. E. et al. The CRISPR/Cas bacterial immune system cleaves bacteriophage and plasmid DNA. Nature 468, 67–71 (2010).
pubmed: 21048762 doi: 10.1038/nature09523
Meeske, A. J., Nakandakari-Higa, S. & Marraffini, L. A. Cas13-induced cellular dormancy prevents the rise of CRISPR-resistant bacteriophage. Nature 570, 241–245 (2019).
pubmed: 31142834 pmcid: 6570424 doi: 10.1038/s41586-019-1257-5
Rostøl, J. T. et al. The Card1 nuclease provides defence during type III CRISPR immunity. Nature 590, 624–629 (2021).
pubmed: 33461211 pmcid: 7906951 doi: 10.1038/s41586-021-03206-x
Elmore, J. R. et al. Programmable plasmid interference by the CRISPR-Cas system in Thermococcus kodakarensis. RNA Biol. 10, 828–840 (2013).
pubmed: 23535213 pmcid: 3737340 doi: 10.4161/rna.24084
Carte, J. et al. The three major types of CRISPR-Cas systems function independently in CRISPR RNA biogenesis in Streptococcus thermophilus. Mol. Microbiol. 93, 98–112 (2014).
pubmed: 24811454 pmcid: 4095994 doi: 10.1111/mmi.12644
Crawley, A. B., Henriksen, E. D., Stout, E., Brandt, K. & Barrangou, R. Characterizing the activity of abundant, diverse and active CRISPR-Cas systems in lactobacilli. Sci. Rep. 8, 11544 (2018).
pubmed: 30068963 pmcid: 6070500 doi: 10.1038/s41598-018-29746-3
Deltcheva, E. et al. CRISPR RNA maturation by trans-encoded small RNA and host factor RNase III. Nature 471, 602–607 (2011).
pubmed: 21455174 pmcid: 3070239 doi: 10.1038/nature09886
McGinn, J. & Marraffini, L. A. CRISPR-Cas systems optimize their immune response by specifying the site of spacer integration. Mol. Cell 64, 616–623 (2016).
pubmed: 27618488 pmcid: 5096952 doi: 10.1016/j.molcel.2016.08.038
Martynov, A., Severinov, K. & Ispolatov, I. Optimal number of spacers in CRISPR arrays. PLoS Comput. Biol. 13, e1005891 (2017).
pubmed: 29253874 pmcid: 5749868 doi: 10.1371/journal.pcbi.1005891
Rao, C., Chin, D. & Ensminger, A. W. Priming in a permissive type I-C CRISPR-Cas system reveals distinct dynamics of spacer acquisition and loss. RNA 23, 1525–1538 (2017).
Liao, C. & Beisel, C. L. The tracrRNA in CRISPR biology and technologies. Annu. Rev. Genet. 55, 161–181 (2021).
pubmed: 34416117 doi: 10.1146/annurev-genet-071719-022559
Karvelis, T. et al. crRNA and tracrRNA guide Cas9-mediated DNA interference in Streptococcus thermophilus. RNA Biol. 10, 841–851 (2013).
pubmed: 23535272 pmcid: 3737341 doi: 10.4161/rna.24203
Jinek, M. et al. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 337, 816–821 (2012).
pubmed: 22745249 pmcid: 6286148 doi: 10.1126/science.1225829
Pickar-Oliver, A. & Gersbach, C. A. The next generation of CRISPR–Cas technologies and applications. Nat. Rev. Mol. Cell Biol. 20, 490–507 (2019).
pubmed: 31147612 pmcid: 7079207 doi: 10.1038/s41580-019-0131-5
Bikard, D. et al. Programmable repression and activation of bacterial gene expression using an engineered CRISPR-Cas system. Nucleic Acids Res. 41, 7429–7437 (2013).
pubmed: 23761437 pmcid: 3753641 doi: 10.1093/nar/gkt520
Jiang, W., Bikard, D., Cox, D., Zhang, F. & Marraffini, L. A. RNA-guided editing of bacterial genomes using CRISPR-Cas systems. Nat. Biotechnol. 31, 233–239 (2013).
pubmed: 23360965 pmcid: 3748948 doi: 10.1038/nbt.2508
Citorik, R. J., Mimee, M. & Lu, T. K. Sequence-specific antimicrobials using efficiently delivered RNA-guided nucleases. Nat. Biotechnol. 32, 1141–1145 (2014).
pubmed: 25240928 pmcid: 4237163 doi: 10.1038/nbt.3011
Leenay, R. T. & Beisel, C. L. Deciphering, communicating, and engineering the CRISPR PAM. J. Mol. Biol. 429, 177–191 (2017).
pubmed: 27916599 doi: 10.1016/j.jmb.2016.11.024
Dugar, G. et al. CRISPR RNA-dependent binding and cleavage of endogenous RNAs by the Campylobacter jejuni Cas9. Mol. Cell 69, 893–905 (2018).
pubmed: 29499139 pmcid: 5859949 doi: 10.1016/j.molcel.2018.01.032
Xue, C. et al. CRISPR interference and priming varies with individual spacer sequences. Nucleic Acids Res. 43, 10831–10847 (2015).
pubmed: 26586800 pmcid: 4678831 doi: 10.1093/nar/gkv1259
Collias, D. et al. A positive, growth-based PAM screen identifies noncanonical motifs recognized by the Cas9. Sci. Adv. 6, eabb4054 (2020).
pubmed: 32832642 pmcid: 7439565 doi: 10.1126/sciadv.abb4054
Altuvia, Y. et al. In vivo cleavage rules and target repertoire of RNase III in Escherichia coli. Nucleic Acids Res. 46, 10530–10531 (2018).
pubmed: 30184218 pmcid: 6212792 doi: 10.1093/nar/gky816
Wei, Y., Chesne, M. T., Terns, R. M. & Terns, M. P. Sequences spanning the leader-repeat junction mediate CRISPR adaptation to phage in Streptococcus thermophilus. Nucleic Acids Res. 43, 1749–1758 (2015).
pubmed: 25589547 pmcid: 4330368 doi: 10.1093/nar/gku1407
Pougach, K. et al. Transcription, processing and function of CRISPR cassettes in Escherichia coli. Mol. Microbiol. 77, 1367–1379 (2010).
pubmed: 20624226 pmcid: 2939963 doi: 10.1111/j.1365-2958.2010.07265.x
Yosef, I., Goren, M. G. & Qimron, U. Proteins and DNA elements essential for the CRISPR adaptation process in Escherichia coli. Nucleic Acids Res. 40, 5569–5576 (2012).
pubmed: 22402487 pmcid: 3384332 doi: 10.1093/nar/gks216
Jiao, C. et al. Noncanonical crRNAs derived from host transcripts enable multiplexable RNA detection by Cas9. Science 372, 941–948 (2021).
Jabbari, H., Wark, I. & Montemagno, C. RNA secondary structure prediction with pseudoknots: contribution of algorithm versus energy model. PLoS ONE 13, e0194583 (2018).
pubmed: 29621250 pmcid: 5886407 doi: 10.1371/journal.pone.0194583
Wei, Y., Terns, R. M. & Terns, M. P. Cas9 function and host genome sampling in Type II-A CRISPR-Cas adaptation. Genes Dev. 29, 356–361 (2015).
pubmed: 25691466 pmcid: 4335292 doi: 10.1101/gad.257550.114
Laanto, E., Hoikkala, V., Ravantti, J. & Sundberg, L.-R. Long-term genomic coevolution of host-parasite interaction in the natural environment. Nat. Commun. 8, 111 (2017).
pubmed: 28740072 pmcid: 5524643 doi: 10.1038/s41467-017-00158-7
Zhang, Y. et al. Processing-independent CRISPR RNAs limit natural transformation in Neisseria meningitidis. Mol. Cell 50, 488–503 (2013).
pubmed: 23706818 pmcid: 3694421 doi: 10.1016/j.molcel.2013.05.001
Dugar, G. et al. High-resolution transcriptome maps reveal strain-specific regulatory features of multiple Campylobacter jejuni isolates. PLoS Genet. 9, e1003495 (2013).
pubmed: 23696746 pmcid: 3656092 doi: 10.1371/journal.pgen.1003495
Haurwitz, R. E., Jinek, M., Wiedenheft, B., Zhou, K. & Doudna, J. A. Sequence- and structure-specific RNA processing by a CRISPR endonuclease. Science 329, 1355–1358 (2010).
pubmed: 20829488 pmcid: 3133607 doi: 10.1126/science.1192272
Li, R. & Bowerman, B. Symmetry breaking in biology. Cold Spring Harb. Perspect. Biol. 2, a003475 (2010).
pubmed: 20300216 pmcid: 2829966 doi: 10.1101/cshperspect.a003475
McCarty, N. S., Graham, A. E., Studená, L. & Ledesma-Amaro, R. Multiplexed CRISPR technologies for gene editing and transcriptional regulation. Nat. Commun. 11, 1281 (2020).
pubmed: 32152313 pmcid: 7062760 doi: 10.1038/s41467-020-15053-x
Al-Hashimi, H. M. & Walter, N. G. RNA dynamics: it is about time. Curr. Opin. Struct. Biol. 18, 321–329 (2008).
pubmed: 18547802 pmcid: 2580758 doi: 10.1016/j.sbi.2008.04.004
Watters, K. E., Strobel, E. J., Yu, A. M., Lis, J. T. & Lucks, J. B. Cotranscriptional folding of a riboswitch at nucleotide resolution. Nat. Struct. Mol. Biol. 23, 1124–1131 (2016).
pubmed: 27798597 pmcid: 5497173 doi: 10.1038/nsmb.3316
Liao, C. et al. Modular one-pot assembly of CRISPR arrays enables library generation and reveals factors influencing crRNA biogenesis. Nat. Commun. 10, 2948 (2019).
pubmed: 31270316 pmcid: 6610086 doi: 10.1038/s41467-019-10747-3
Wimmer, F. & Beisel, C. L. CRISPR-Cas systems and the paradox of self-targeting spacers. Front. Microbiol. 10, 3078 (2019).
pubmed: 32038537 doi: 10.3389/fmicb.2019.03078
Leenay, R. T. et al. Genome editing with CRISPR-Cas9 in Lactobacillus plantarum revealed that editing outcomes can vary across strains and between methods. Biotechnol. J. 14, e1700583 (2019).
pubmed: 30156038 doi: 10.1002/biot.201700583
Gruber, A. R., Lorenz, R., Bernhart, S. H., Neubock, R. & Hofacker, I. L. The Vienna RNA Websuite. Nucleic Acids Res. 36, W70–W74 (2008).
pubmed: 18424795 pmcid: 2447809 doi: 10.1093/nar/gkn188
Lorenz, R. et al. ViennaRNA Package 2.0. Algorithms Mol. Biol. 6, 26 (2011).
Sharma, C. M. et al. The primary transcriptome of the major human pathogen Helicobacter pylori. Nature 464, 250–255 (2010).
pubmed: 20164839 doi: 10.1038/nature08756
Papenfort, K. et al. σ
pubmed: 17427289 pmcid: 1804206 doi: 10.1111/j.1365-2958.2006.05524.x
Pernitzsch, S. R., Tirier, S. M., Beier, D. & Sharma, C. M. A variable homopolymeric G-repeat defines small RNA-mediated posttranscriptional regulation of a chemotaxis receptor in Helicobacter pylori. Proc. Natl Acad. Sci. USA 111, E501–E510 (2014).
pubmed: 24474799 pmcid: 3910625 doi: 10.1073/pnas.1315152111
Martin, M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet J. 17, 1 (2011).
doi: 10.14806/ej.17.1.200
Förstner, K. U., Vogel, J. & Sharma, C. M. READemption-a tool for the computational analysis of deep-sequencing-based transcriptome data. Bioinformatics 30, 3421–3423 (2014).
pubmed: 25123900 doi: 10.1093/bioinformatics/btu533
Hoffmann, S. et al. Fast mapping of short sequences with mismatches, insertions and deletions using index structures. PLoS Comput. Biol. 5, e1000502 (2009).
pubmed: 19750212 pmcid: 2730575 doi: 10.1371/journal.pcbi.1000502
Li, H. et al. The Sequence Alignment/Map format and SAMtools. Bioinformatics 25, 2078–2079 (2009).
pubmed: 19505943 pmcid: 2723002 doi: 10.1093/bioinformatics/btp352
Lopez-Delisle, L. et al. pyGenomeTracks: reproducible plots for multivariate genomic data sets. Bioinformatics 37, 422–423 (2020).
pmcid: 8058774 doi: 10.1093/bioinformatics/btaa692
Kent, W. J., Zweig, A. S., Barber, G., Hinrichs, A. S. & Karolchik, D. BigWig and BigBed: enabling browsing of large distributed datasets. Bioinformatics 26, 2204–2207 (2010).
pubmed: 20639541 pmcid: 2922891 doi: 10.1093/bioinformatics/btq351
Padilha, V. A., Alkhnbashi, O. S., Shah, S. A., de Carvalho, A. C. P. L. F. & Backofen, R. CRISPRcasIdentifier: machine learning for accurate identification and classification of CRISPR-Cas systems. Gigascience 9, giaa062 (2020).
Padilha, V. A. et al. Casboundary: automated definition of integral Cas cassettes. Bioinformatics 37, 1352–1359 (2020).
pmcid: 8208735 doi: 10.1093/bioinformatics/btaa984
Mitrofanov, A. et al. CRISPRidentify: identification of CRISPR arrays using machine learning approach. Nucleic Acids Res. 49, e20 (2021).
pubmed: 33290505 doi: 10.1093/nar/gkaa1158
Alkhnbashi, O. S. et al. CRISPRstrand: predicting repeat orientations to determine the crRNA-encoding strand at CRISPR loci. Bioinformatics 30, i489–i496 (2014).
pubmed: 25161238 pmcid: 4147912 doi: 10.1093/bioinformatics/btu459
Fu, L., Niu, B., Zhu, Z., Wu, S. & Li, W. CD-HIT: accelerated for clustering the next-generation sequencing data. Bioinformatics 28, 3150–3152 (2012).
pubmed: 23060610 pmcid: 3516142 doi: 10.1093/bioinformatics/bts565
Ding, Y. & Lawrence, C. E. A statistical sampling algorithm for RNA secondary structure prediction. Nucleic Acids Res. 31, 7280–7301 (2003).
pubmed: 14654704 pmcid: 297010 doi: 10.1093/nar/gkg938
Altschul, S. F. & Erickson, B. W. Significance of nucleotide sequence alignments: a method for random sequence permutation that preserves dinucleotide and codon usage. Mol. Biol. Evol. 2, 526–538 (1985).
pubmed: 3870875

Auteurs

Chunyu Liao (C)

Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz-Centre for Infection Research (HZI), Würzburg, Germany.

Sahil Sharma (S)

Department of Molecular Infection Biology II, Institute of Molecular Infection Biology, University of Würzburg, Würzburg, Germany.

Sarah L Svensson (SL)

Department of Molecular Infection Biology II, Institute of Molecular Infection Biology, University of Würzburg, Würzburg, Germany.

Anuja Kibe (A)

Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz-Centre for Infection Research (HZI), Würzburg, Germany.

Zasha Weinberg (Z)

Bioinformatics Group, Department of Computer Science and Interdisciplinary Centre for Bioinformatics, Leipzig University, Leipzig, Germany.

Omer S Alkhnbashi (OS)

Bioinformatics group, Department of Computer Science, University of Freiburg, Freiburg, Germany.

Thorsten Bischler (T)

Core Unit Systems Medicine, University of Würzburg, Würzburg, Germany.

Rolf Backofen (R)

Bioinformatics group, Department of Computer Science, University of Freiburg, Freiburg, Germany.
Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Freiburg, Germany.

Neva Caliskan (N)

Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz-Centre for Infection Research (HZI), Würzburg, Germany.
Medical Faculty, University of Würzburg, Würzburg, Germany.

Cynthia M Sharma (CM)

Department of Molecular Infection Biology II, Institute of Molecular Infection Biology, University of Würzburg, Würzburg, Germany.

Chase L Beisel (CL)

Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz-Centre for Infection Research (HZI), Würzburg, Germany. Chase.Beisel@helmholtz-hiri.de.
Medical Faculty, University of Würzburg, Würzburg, Germany. Chase.Beisel@helmholtz-hiri.de.

Articles similaires

Genome, Viral Ralstonia Composting Solanum lycopersicum Bacteriophages
Prader-Willi Syndrome Humans Angelman Syndrome CRISPR-Cas Systems Human Embryonic Stem Cells
Humans RNA, Circular Exosomes Cell Proliferation Epithelial-Mesenchymal Transition
Host Specificity Bacteriophages Genomics Algorithms Escherichia coli

Classifications MeSH