Spatial charting of single-cell transcriptomes in tissues.


Journal

Nature biotechnology
ISSN: 1546-1696
Titre abrégé: Nat Biotechnol
Pays: United States
ID NLM: 9604648

Informations de publication

Date de publication:
08 2022
Historique:
received: 03 08 2021
accepted: 25 01 2022
revised: 24 01 2022
pubmed: 23 3 2022
medline: 16 8 2022
entrez: 22 3 2022
Statut: ppublish

Résumé

Single-cell RNA sequencing methods can profile the transcriptomes of single cells but cannot preserve spatial information. Conversely, spatial transcriptomics assays can profile spatial regions in tissue sections, but do not have single-cell resolution. Here, we developed a computational method called CellTrek that combines these two datasets to achieve single-cell spatial mapping through coembedding and metric learning approaches. We benchmarked CellTrek using simulation and in situ hybridization datasets, which demonstrated its accuracy and robustness. We then applied CellTrek to existing mouse brain and kidney datasets and showed that CellTrek can detect topological patterns of different cell types and cell states. We performed single-cell RNA sequencing and spatial transcriptomics experiments on two ductal carcinoma in situ tissues and applied CellTrek to identify tumor subclones that were restricted to different ducts, and specific T cell states adjacent to the tumor areas. Our data show that CellTrek can accurately map single cells in diverse tissue types to resolve their spatial organization.

Identifiants

pubmed: 35314812
doi: 10.1038/s41587-022-01233-1
pii: 10.1038/s41587-022-01233-1
pmc: PMC9673606
mid: NIHMS1849763
doi:

Types de publication

Journal Article Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov't Research Support, U.S. Gov't, Non-P.H.S.

Langues

eng

Sous-ensembles de citation

IM

Pagination

1190-1199

Subventions

Organisme : NCI NIH HHS
ID : P30 CA016672
Pays : United States
Organisme : NCI NIH HHS
ID : R01 CA236864
Pays : United States
Organisme : NCI NIH HHS
ID : R01 CA240526
Pays : United States

Informations de copyright

© 2022. The Author(s), under exclusive licence to Springer Nature America, Inc.

Références

Lim, B., Lin, Y. & Navin, N. Advancing cancer research and medicine with single-cell genomics. Cancer Cell 37, 456–470 (2020).
pubmed: 32289270 pmcid: 7899145 doi: 10.1016/j.ccell.2020.03.008
Tanay, A. & Regev, A. Scaling single-cell genomics from phenomenology to mechanism. Nature 541, 331–338 (2017).
pubmed: 28102262 pmcid: 5438464 doi: 10.1038/nature21350
Regev, A. et al. The human cell atlas. eLife 6, e27041 (2017).
pubmed: 29206104 pmcid: 5762154 doi: 10.7554/eLife.27041
Wang, Y. & Navin, N. E. Advances and applications of single-cell sequencing technologies. Mol. Cell 58, 598–609 (2015).
pubmed: 26000845 pmcid: 4441954 doi: 10.1016/j.molcel.2015.05.005
Papalexi, E. & Satija, R. Single-cell RNA sequencing to explore immune cell heterogeneity. Nat. Rev. Immunol. 18, 35–45 (2018).
pubmed: 28787399 doi: 10.1038/nri.2017.76
Longo, S. K., Guo, M. G., Ji, A. L., Khavari, P. A. Integrating single-cell and spatial transcriptomics to elucidate intercellular tissue dynamics. Nat. Rev. Genet. 22, 627–644 (2021).
pubmed: 34145435 doi: 10.1038/s41576-021-00370-8
Lee, J. H. Quantitative approaches for investigating the spatial context of gene expression. Wiley Interdiscip. Rev. Syst. Biol. Med. 9, e1369 (2017).
doi: 10.1002/wsbm.1369
Janiszewska, M. The microcosmos of intratumor heterogeneity: the space-time of cancer evolution. Oncogene 39, 2031–2039 (2020).
pubmed: 31784650 doi: 10.1038/s41388-019-1127-5
Stahl, P. L. et al. Visualization and analysis of gene expression in tissue sections by spatial transcriptomics. Science 353, 78–82 (2016).
pubmed: 27365449 doi: 10.1126/science.aaf2403
Rodriques, S. G. et al. Slide-seq: a scalable technology for measuring genome-wide expression at high spatial resolution. Science 363, 1463–1467 (2019).
pubmed: 30923225 pmcid: 6927209 doi: 10.1126/science.aaw1219
Cable, D. M. et al. Robust decomposition of cell type mixtures in spatial transcriptomics. Nat. Biotechnol. https://doi.org/10.1038/s41587-021-00830-w (2021).
Maaskola, J. et al. Charting tissue expression anatomy by spatial transcriptome decomposition. Preprint at bioRxiv, 362624 (2018).
Andersson, A. et al. Spatial mapping of cell types by integration of transcriptomics data. Preprint at bioRxiv, 2019.2012.2013.874495 (2019).
Andersson, A. et al. Single-cell and spatial transcriptomics enables probabilistic inference of cell type topography. Commun Biol. 3, 565 (2020).
pubmed: 33037292 pmcid: 7547664 doi: 10.1038/s42003-020-01247-y
Kleshchevnikov, V. et al. Comprehensive mapping of tissue cell architecture via integrated single cell and spatial transcriptomics. Preprint at bioRxiv, 2020.2011.2015.378125 (2020).
Moncada, R. et al. Integrating microarray-based spatial transcriptomics and single-cell RNA-seq reveals tissue architecture in pancreatic ductal adenocarcinomas. Nat. Biotechnol. 38, 333–342 (2020).
pubmed: 31932730 doi: 10.1038/s41587-019-0392-8
Tasic, B. et al. Adult mouse cortical cell taxonomy revealed by single cell transcriptomics. Nat. Neurosci. 19, 335–346 (2016).
pubmed: 26727548 pmcid: 4985242 doi: 10.1038/nn.4216
Ransick, A. et al. Single-cell profiling reveals sex, lineage, and regional diversity in the mouse kidney. Dev. Cell 51, 399–413 e397 (2019).
pubmed: 31689386 pmcid: 6948019 doi: 10.1016/j.devcel.2019.10.005
Breiman, L. Random forests. Mach. Learn. 45, 5–32 (2001).
doi: 10.1023/A:1010933404324
Nitzan, M., Karaiskos, N., Friedman, N. & Rajewsky, N. Gene expression cartography. Nature 576, 132 (2019).
pubmed: 31748748 doi: 10.1038/s41586-019-1773-3
Wilkerson, M. D. & Hayes, D. N. ConsensusClusterPlus: a class discovery tool with confidence assessments and item tracking. Bioinformatics 26, 1572–1573 (2010).
pubmed: 20427518 pmcid: 2881355 doi: 10.1093/bioinformatics/btq170
Langfelder, P. & Horvath, S. WGCNA: an R package for weighted correlation network analysis. BMC Bioinformatics 9, 559 (2008).
pubmed: 19114008 pmcid: 2631488 doi: 10.1186/1471-2105-9-559
Lohoff, T. Integration of spatial and single-cell transcriptomic data elucidates mouse organogenesis. Nat. Biotechnol. 40, 74–85 (2022).
pubmed: 34489600 doi: 10.1038/s41587-021-01006-2
Stuart, T. et al. Comprehensive integration of single-cell data. Cell 177, 1888 (2019).
pubmed: 31178118 pmcid: 6687398 doi: 10.1016/j.cell.2019.05.031
Trapnell, C. et al. The dynamics and regulators of cell fate decisions are revealed by pseudotemporal ordering of single cells. Nat Biotechnol 32, 381–386 (2014).
pubmed: 24658644 pmcid: 4122333 doi: 10.1038/nbt.2859
Qiu, X. J. et al. Reversed graph embedding resolves complex single-cell trajectories. Nat. Methods 14, 979 (2017) .
pubmed: 28825705 pmcid: 5764547 doi: 10.1038/nmeth.4402
Fawkner-Corbett, D. et al. Spatiotemporal analysis of human intestinal development at single-cell resolution. Cell 184, 810–826. e823 (2021).
pubmed: 33406409 pmcid: 7864098 doi: 10.1016/j.cell.2020.12.016
Tasic, B. et al. Shared and distinct transcriptomic cell types across neocortical areas. Nature 563, 72–78 (2018).
pubmed: 30382198 pmcid: 6456269 doi: 10.1038/s41586-018-0654-5
Stickels, R. R. et al. Highly sensitive spatial transcriptomics at near-cellular resolution with Slide-seqV2. Nat. Biotechnol. 39, 313–319 (2021).
pubmed: 33288904 doi: 10.1038/s41587-020-0739-1
Saunders, A. et al. Molecular diversity and specializations among the cells of the adult mouse brain. Cell 174, 1015–1030.e1016 (2018).
pubmed: 30096299 pmcid: 6447408 doi: 10.1016/j.cell.2018.07.028
Lake, B. B. et al. A single-nucleus RNA-sequencing pipeline to decipher the molecular anatomy and pathophysiology of human kidneys. Nat. Commun. 10, 2832 (2019).
pubmed: 31249312 pmcid: 6597610 doi: 10.1038/s41467-019-10861-2
Janosevic, D. et al. The orchestrated cellular and molecular responses of the kidney to endotoxin define a precise sepsis timeline. eLife 10, e62270 (2021).
pubmed: 33448928 pmcid: 7810465 doi: 10.7554/eLife.62270
Naray-Fejes-Toth, A., Snyder, P. M. & Fejes-Toth, G. The kidney-specific WNK1 isoform is induced by aldosterone and stimulates epithelial sodium channel-mediated Na+ transport. Proc. Natl Acad. Sci. USA 101, 17434–17439 (2004).
pubmed: 15583131 pmcid: 536044 doi: 10.1073/pnas.0408146101
Park, J. et al. Single-cell transcriptomics of the mouse kidney reveals potential cellular targets of kidney disease. Science 360, 758–763 (2018).
pubmed: 29622724 pmcid: 6188645 doi: 10.1126/science.aar2131
Jin, S. et al. Inference and analysis of cell-cell communication using CellChat. Nat. Commun. 12, 1088 (2021).
pubmed: 33597522 pmcid: 7889871 doi: 10.1038/s41467-021-21246-9
Zhao, Y. et al. Isolation and epithelial co-culture of mouse renal peritubular endothelial cells. BMC Cell Biol. 15, 40 (2014).
pubmed: 25433516 pmcid: 4260259 doi: 10.1186/s12860-014-0040-6
Miao, Z. et al. Single cell regulatory landscape of the mouse kidney highlights cellular differentiation programs and disease targets. Nat. Commun. 12, 2277 (2021).
pubmed: 33859189 pmcid: 8050063 doi: 10.1038/s41467-021-22266-1
Mantovani, A. et al. The chemokine system in diverse forms of macrophage activation and polarization. Trends Immunol. 25, 677–686 (2004).
pubmed: 15530839 doi: 10.1016/j.it.2004.09.015
Quinn, K. E., Mackie, D. I. & Caron, K. M. Emerging roles of atypical chemokine receptor 3 (ACKR3) in normal development and physiology. Cytokine 109, 17–23 (2018).
pubmed: 29903572 pmcid: 6005205 doi: 10.1016/j.cyto.2018.02.024
Gao, R. et al. Delineating copy number and clonal substructure in human tumors from single-cell transcriptomes. Nat. Biotechnol. 39, 599–608 (2021).
pubmed: 33462507 pmcid: 8122019 doi: 10.1038/s41587-020-00795-2
Korotkevich, G. et al. Fast gene set enrichment analysis. Preprint at bioRxiv, 060012 (2021).
Casasent, A. K. et al. Multiclonal invasion in breast tumors identified by topographic single cell sequencing. Cell 172, 205 (2018) .
pubmed: 29307488 pmcid: 5766405 doi: 10.1016/j.cell.2017.12.007
Prabhakaran, S. et al. Evaluation of invasive breast cancer samples using a 12-chemokine gene expression score: correlation with clinical outcomes. Breast Cancer Res. 19, 71 (2017).
pubmed: 28629479 pmcid: 5477261 doi: 10.1186/s13058-017-0864-z
Sautes-Fridman, C., Petitprez, F., Calderaro, J. & Fridman, W. H. Tertiary lymphoid structures in the era of cancer immunotherapy. Nat. Rev. Cancer 19, 307–325 (2019).
pubmed: 31092904 doi: 10.1038/s41568-019-0144-6
Sinha, V. C. & Piwnica-Worms, H. Intratumoral heterogeneity in ductal carcinoma in situ: chaos and consequence. J Mammary Gland Biol. Neoplasia 23, 191–205 (2018).
pubmed: 30194658 pmcid: 6934090 doi: 10.1007/s10911-018-9410-6
Marusyk, A., Janiszewska, M. & Polyak, K. Intratumor heterogeneity: the Rosetta Stone of therapy resistance. Cancer Cell 37, 471–484 (2020).
pubmed: 32289271 pmcid: 7181408 doi: 10.1016/j.ccell.2020.03.007
Lennington, W. J., Jensen, R. A., Dalton, L. W. & Page, D. L. Ductal carcinoma in-situ of the breast—heterogeneity of individual lesions. Cancer 73, 118–124 (1994).
pubmed: 8275415 doi: 10.1002/1097-0142(19940101)73:1<118::AID-CNCR2820730121>3.0.CO;2-R
Ishwaran, H., Kogalur, U. B., Blackstone, E. H. & Lauer, M. S. Random survival forests. Ann. Appl. Stat. 2, 841–860 (2008).
doi: 10.1214/08-AOAS169
Hahsler, M., Piekenbrock, M. & Doran, D. dbscan: fast density-based clustering with R. J. Stat. Softw. 91, 1–30 (2019).
doi: 10.18637/jss.v091.i01
Gu, Z., Eils, R. & Schlesner, M. Complex heatmaps reveal patterns and correlations in multidimensional genomic data. Bioinformatics 32, 2847–2849 (2016).
pubmed: 27207943 doi: 10.1093/bioinformatics/btw313
Paradis, E. & Schliep, K. ape 5.0: an environment for modern phylogenetics and evolutionary analyses in R. Bioinformatics 35, 526–528 (2019).
pubmed: 30016406 doi: 10.1093/bioinformatics/bty633
Zappia, L., Phipson, B. & Oshlack, A. Splatter: simulation of single-cell RNA sequencing data. Genome Biol. 18, 174 (2017).
pubmed: 28899397 pmcid: 5596896 doi: 10.1186/s13059-017-1305-0
Schuhmacher, D. et al. transport: computation of optimal transport plans and Wasserstein distances. R package v.0.12-2, https://cran.r-project.org/package=transport (2020).
Yu, G., Wang, L. G., Han, Y. & He, Q. Y. clusterProfiler: an R package for comparing biological themes among gene clusters. OMICS 16, 284–287 (2012).
pubmed: 22455463 pmcid: 3339379 doi: 10.1089/omi.2011.0118
Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using Gaussian finite mixture models. R. J. 8, 289–317 (2016).
pubmed: 27818791 pmcid: 5096736 doi: 10.32614/RJ-2016-021

Auteurs

Runmin Wei (R)

Department of Genetics, UT MD Anderson Cancer Center, Houston, TX, USA.

Siyuan He (S)

Department of Genetics, UT MD Anderson Cancer Center, Houston, TX, USA.
Graduate School of Biomedical Sciences, University of Texas MD Anderson Cancer Center, Houston, TX, USA.

Shanshan Bai (S)

Department of Genetics, UT MD Anderson Cancer Center, Houston, TX, USA.

Emi Sei (E)

Department of Genetics, UT MD Anderson Cancer Center, Houston, TX, USA.

Min Hu (M)

Department of Genetics, UT MD Anderson Cancer Center, Houston, TX, USA.

Alastair Thompson (A)

Department of Surgery, Baylor College of Medicine, Houston, TX, USA.

Ken Chen (K)

Department of Bioinformatics and Computational Biology, UT MD Anderson Cancer Center, Houston, TX, USA.

Savitri Krishnamurthy (S)

Department of Pathology, UT MD Anderson Cancer Center, Houston, TX, USA.

Nicholas E Navin (NE)

Department of Genetics, UT MD Anderson Cancer Center, Houston, TX, USA. nnavin@mdanderson.org.
Graduate School of Biomedical Sciences, University of Texas MD Anderson Cancer Center, Houston, TX, USA. nnavin@mdanderson.org.
Department of Bioinformatics and Computational Biology, UT MD Anderson Cancer Center, Houston, TX, USA. nnavin@mdanderson.org.

Articles similaires

Robotic Surgical Procedures Animals Humans Telemedicine Models, Animal

Odour generalisation and detection dog training.

Lyn Caldicott, Thomas W Pike, Helen E Zulch et al.
1.00
Animals Odorants Dogs Generalization, Psychological Smell
Animals TOR Serine-Threonine Kinases Colorectal Neoplasms Colitis Mice
Animals Tail Swine Behavior, Animal Animal Husbandry

Classifications MeSH