Likelihood-based non-Markovian models from molecular dynamics.

coarse-grained models data-driven parametrization generalized Langevin equation maximum likelihood

Journal

Proceedings of the National Academy of Sciences of the United States of America
ISSN: 1091-6490
Titre abrégé: Proc Natl Acad Sci U S A
Pays: United States
ID NLM: 7505876

Informations de publication

Date de publication:
29 03 2022
Historique:
entrez: 23 3 2022
pubmed: 24 3 2022
medline: 3 5 2022
Statut: ppublish

Résumé

SignificanceThe analysis of complex systems with many degrees of freedom generally involves the definition of low-dimensional collective variables more amenable to physical understanding. Their dynamics can be modeled by generalized Langevin equations, whose coefficients have to be estimated from simulations of the initial high-dimensional system. These equations feature a memory kernel describing the mutual influence of the low-dimensional variables and their environment. We introduce and implement an approach where the generalized Langevin equation is designed to maximize the statistical likelihood of the observed data. This provides an efficient way to generate reduced models to study dynamical properties of complex processes such as chemical reactions in solution, conformational changes in biomolecules, or phase transitions in condensed matter systems.

Identifiants

pubmed: 35320038
doi: 10.1073/pnas.2117586119
pmc: PMC9060509
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

e2117586119

Références

J Chem Phys. 2017 Jan 7;146(1):014104
pubmed: 28063444
J Chem Phys. 2015 Dec 28;143(24):243128
pubmed: 26723613
Proc Natl Acad Sci U S A. 2021 Aug 3;118(31):
pubmed: 34326249
Phys Rev Lett. 2016 Apr 8;116(14):147804
pubmed: 27104730
Soft Matter. 2020 Sep 23;16(36):8330-8344
pubmed: 32785383
Soft Matter. 2019 Oct 14;15(38):7567-7582
pubmed: 31436282
J Chem Theory Comput. 2017 Jun 13;13(6):2481-2488
pubmed: 28505440
J Chem Phys. 2016 Nov 28;145(20):204117
pubmed: 27908121
J Phys Chem B. 2021 May 20;125(19):4931-4954
pubmed: 33982567
J Chem Phys. 2017 Dec 28;147(24):244110
pubmed: 29289151
Proc Natl Acad Sci U S A. 2009 Jul 7;106(27):10884-9
pubmed: 19549838
J Chem Phys. 2013 Apr 7;138(13):134106
pubmed: 23574207
J Chem Phys. 2019 May 7;150(17):174113
pubmed: 31067888
J Chem Phys. 2013 Jul 28;139(4):044107
pubmed: 23901960
Phys Rev E. 2018 May;97(5-1):052121
pubmed: 29906897
Science. 2014 Mar 28;343(6178):1493-6
pubmed: 24675957
J Chem Phys. 2014 Mar 28;140(12):124103
pubmed: 24697420
Phys Rev E Stat Nonlin Soft Matter Phys. 2010 Feb;81(2 Pt 2):026704
pubmed: 20365672
Soft Matter. 2018 Nov 28;14(46):9368-9382
pubmed: 30427043
J Phys Condens Matter. 2021 May 03;33(21):
pubmed: 33592585
Phys Rev Lett. 2005 May 20;94(19):198302
pubmed: 16090221
SIAM J Appl Math. 2009;69(5):1277-1308
pubmed: 26412904
Phys Rev E. 2020 Mar;101(3-1):032408
pubmed: 32289977
Proc Natl Acad Sci U S A. 2018 May 15;115(20):5169-5174
pubmed: 29712838
J Chem Phys. 2015 Apr 21;142(15):154104
pubmed: 25903863
J Chem Phys. 2015 Jun 28;142(24):244110
pubmed: 26133413
Proc Natl Acad Sci U S A. 2000 Mar 28;97(7):2968-73
pubmed: 10737778
Proc Natl Acad Sci U S A. 2016 Dec 13;113(50):14183-14188
pubmed: 27911787

Auteurs

Hadrien Vroylandt (H)

Institut des Sciences du Calcul et des Données, Sorbonne Université, F-75005 Paris, France.

Ludovic Goudenège (L)

CNRS, FR 3487, Fédération de Mathématiques de CentraleSupélec, CentraleSupélec, Université Paris-Saclay, 91190 Gif-sur-Yvette, France.

Pierre Monmarché (P)

Laboratoire Jacques-Louis Lions, Sorbonne Université, F-75005 Paris, France.
Laboratoire de Chimie Théorique, Sorbonne Université, F-75005 Paris, France.

Fabio Pietrucci (F)

Muséum National d'Histoire Naturelle, UMR CNRS 7590, Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie, Sorbonne Université, F-75005 Paris, France.

Benjamin Rotenberg (B)

Physicochimie des Électrolytes et Nanosystèmes Interfaciaux, Sorbonne Université, CNRS, F-75005 Paris, France.

Articles similaires

Photosynthesis Ribulose-Bisphosphate Carboxylase Carbon Dioxide Molecular Dynamics Simulation Cyanobacteria
Fucosyltransferases Drug Repositioning Molecular Docking Simulation Molecular Dynamics Simulation Humans
Receptor, Cannabinoid, CB1 Ligands Molecular Dynamics Simulation Protein Binding Thermodynamics

Amyloid accelerator polyphosphate fits as the mystery density in α-synuclein fibrils.

Philipp Huettemann, Pavithra Mahadevan, Justine Lempart et al.
1.00
Polyphosphates alpha-Synuclein Humans Amyloid Molecular Dynamics Simulation

Classifications MeSH