Mitochondria transplantation between living cells.


Journal

PLoS biology
ISSN: 1545-7885
Titre abrégé: PLoS Biol
Pays: United States
ID NLM: 101183755

Informations de publication

Date de publication:
03 2022
Historique:
received: 21 01 2022
accepted: 17 02 2022
entrez: 23 3 2022
pubmed: 24 3 2022
medline: 21 4 2022
Statut: epublish

Résumé

Mitochondria and the complex endomembrane system are hallmarks of eukaryotic cells. To date, it has been difficult to manipulate organelle structures within single live cells. We developed a FluidFM-based approach to extract, inject, and transplant organelles from and into living cells with subcellular spatial resolution. The technology combines atomic force microscopy, optical microscopy, and nanofluidics to achieve force and volume control with real-time inspection. We developed dedicated probes that allow minimally invasive entry into cells and optimized fluid flow to extract specific organelles. When extracting single or a defined number of mitochondria, their morphology transforms into a pearls-on-a-string phenotype due to locally applied fluidic forces. We show that the induced transition is calcium independent and results in isolated, intact mitochondria. Upon cell-to-cell transplantation, the transferred mitochondria fuse to the host cells mitochondrial network. Transplantation of healthy and drug-impaired mitochondria into primary keratinocytes allowed monitoring of mitochondrial subpopulation rescue. Fusion with the mitochondrial network of recipient cells occurred 20 minutes after transplantation and continued for over 16 hours. After transfer of mitochondria and cell propagation over generations, donor mitochondrial DNA (mtDNA) was replicated in recipient cells without the need for selection pressure. The approach opens new prospects for the study of organelle physiology and homeostasis, but also for therapy, mechanobiology, and synthetic biology.

Identifiants

pubmed: 35320264
doi: 10.1371/journal.pbio.3001576
pii: PBIOLOGY-D-22-00184
pmc: PMC8942278
doi:

Substances chimiques

DNA, Mitochondrial 0
Calcium SY7Q814VUP

Types de publication

Journal Article Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

e3001576

Commentaires et corrections

Type : CommentIn

Déclaration de conflit d'intérêts

I have read the journal’s policy and the authors of this manuscript have the following competing interests: One of the coauthors (E.S.) oversees the production of FluidFM tips and is employed by SmartTip (NL).

Références

J Cell Biol. 2010 Apr 19;189(2):211-21
pubmed: 20404107
Science. 2004 Feb 13;303(5660):1007-10
pubmed: 14963329
Sci Rep. 2015 Mar 13;5:9073
pubmed: 25766410
Elife. 2021 Jan 13;10:
pubmed: 33438576
ACS Nano. 2014 Jan 28;8(1):546-53
pubmed: 24279711
Clin Exp Dermatol. 2001 Oct;26(7):583-91
pubmed: 11696062
Elife. 2017 Nov 09;6:
pubmed: 29119945
Nat Commun. 2016 Oct 04;7:13028
pubmed: 27701381
Sci Adv. 2019 Nov 20;5(11):eaaw7215
pubmed: 31799389
Science. 2011 Oct 21;334(6054):358-62
pubmed: 21885730
J Am Chem Soc. 2019 Feb 27;141(8):3380-3384
pubmed: 30744381
Nature. 2021 Mar;591(7851):659-664
pubmed: 33658713
Anal Chem. 2011 Feb 15;83(4):1321-7
pubmed: 21247066
Biotechnol J. 2020 Jan;15(1):e1900262
pubmed: 31562752
Nature. 2015 Apr 23;520(7548):553-7
pubmed: 25642965
Cell Biosci. 2019 Nov 29;9:95
pubmed: 31798829
Cell Metab. 2021 Feb 2;33(2):270-282.e8
pubmed: 33278339
Free Radic Biol Med. 2014 Dec;77:41-8
pubmed: 25236744
Nat Nanotechnol. 2019 Jan;14(1):80-88
pubmed: 30510280
Nat Cell Biol. 2018 Feb;20(2):144-151
pubmed: 29335530
EMBO J. 2014 Oct 1;33(19):2142-56
pubmed: 25107473
Proc Natl Acad Sci U S A. 2011 Aug 16;108(33):13534-9
pubmed: 21808029
Soft Matter. 2014 May 14;10(18):3225-8
pubmed: 24718621
Trends Biotechnol. 2014 Jul;32(7):381-8
pubmed: 24856959
Trends Cell Biol. 2014 Jan;24(1):53-60
pubmed: 23932848
J Biol Chem. 1974 Dec 25;249(24):7991-5
pubmed: 4473454
Appl Transl Genom. 2016 Oct 15;11:40-47
pubmed: 28018848
Nat Rev Mol Cell Biol. 2014 Oct;15(10):634-46
pubmed: 25237825
Cell Calcium. 1987 Apr;8(2):103-21
pubmed: 3594554
Cell. 2016 Jul 14;166(2):506-516
pubmed: 27419874
Cell Metab. 2017 Jan 10;25(1):57-71
pubmed: 28094012
Nat Methods. 2012 Jun 28;9(7):676-82
pubmed: 22743772
Cell Metab. 2016 May 10;23(5):921-9
pubmed: 27166949
J Cell Biol. 1998 Oct 19;143(2):351-8
pubmed: 9786947
J Physiol. 2016 Sep 15;594(18):5343-62
pubmed: 27311616
Mol Cell. 2016 Mar 3;61(5):654-666
pubmed: 26942670
Phys Rev Lett. 2015 Aug 21;115(8):088102
pubmed: 26340213
Mitochondrion. 2019 May;46:15-21
pubmed: 30980913
Annu Rev Genet. 2009;43:95-118
pubmed: 19659442
Biochemistry (Mosc). 2020 May;85(5):636-641
pubmed: 32571194
Oncogene. 2003 Nov 13;22(51):8370-8
pubmed: 14614460
J Cell Biol. 2008 Dec 1;183(5):795-803
pubmed: 19029340
Exp Cell Res. 1991 Sep;196(1):137-40
pubmed: 1715276
Science. 2015 Apr 17;348(6232):340-3
pubmed: 25837514
Cold Spring Harb Perspect Biol. 2013 Jun 01;5(6):
pubmed: 23732471
Front Cell Dev Biol. 2020 Mar 18;8:171
pubmed: 32258042
Nature. 2016 Jul 27;535(7613):551-5
pubmed: 27466127
Signal Transduct Target Ther. 2021 Feb 16;6(1):65
pubmed: 33589598
Nat Nanotechnol. 2022 Jan;17(1):98-106
pubmed: 34795441
Nucleic Acids Res. 2010 Jan;38(Database issue):D750-3
pubmed: 19854939
Annu Rev Biochem. 2004;73:293-320
pubmed: 15189144
Anal Chem. 2017 May 2;89(9):5017-5023
pubmed: 28363018
Anal Biochem. 2020 Jan 15;589:113492
pubmed: 31682795
Nature. 2019 Jun;570(7761):380-384
pubmed: 31092924
Stem Cells Int. 2017;2017:7610414
pubmed: 28751917
Cell Rep. 2015 Mar 17;10(10):1681-1691
pubmed: 25772356
N Engl J Med. 2013 Dec 5;369(23):2236-51
pubmed: 24304053
Cell Stem Cell. 2021 Mar 4;28(3):394-408
pubmed: 33667360
Nature. 1982 Feb 18;295(5850):605-7
pubmed: 7057918
ACS Chem Neurosci. 2013 Jun 19;4(6):963-72
pubmed: 23452507
Curr Protoc Bioinformatics. 2013 Dec;44:1.23.1-26
pubmed: 25489354
Biochem Biophys Res Commun. 2008 Oct 3;374(4):609-13
pubmed: 18656442
Appl Transl Genom. 2015 Oct 16;7:32-9
pubmed: 27054083
Nucleic Acids Res. 2012 Oct;40(19):e148
pubmed: 22753025
JACC CardioOncol. 2021 Jul 27;3(3):428-440
pubmed: 34604804
Nano Lett. 2009 Jun;9(6):2501-7
pubmed: 19453133

Auteurs

Christoph G Gäbelein (CG)

Institute of Microbiology, ETH Zurich, Zurich, Switzerland.

Qian Feng (Q)

Institute of Biochemistry, ETH Zurich, Zurich, Switzerland.

Edin Sarajlic (E)

SmartTip BV, Enschede, the Netherlands.

Tomaso Zambelli (T)

Institute for Biomedical Engineering, ETH Zurich, Zurich, Switzerland.

Orane Guillaume-Gentil (O)

Institute of Microbiology, ETH Zurich, Zurich, Switzerland.

Benoît Kornmann (B)

Institute of Biochemistry, ETH Zurich, Zurich, Switzerland.
Department of Biochemistry, University of Oxford, Oxford, United Kingdom.

Julia A Vorholt (JA)

Institute of Microbiology, ETH Zurich, Zurich, Switzerland.

Articles similaires

Pathogenic mitochondrial DNA mutations inhibit melanoma metastasis.

Spencer D Shelton, Sara House, Luiza Martins Nascentes Melo et al.
1.00
DNA, Mitochondrial Humans Melanoma Mutation Neoplasm Metastasis
Psoriasis Humans Magnesium Zinc Trace Elements

A dual role for PSIP1/LEDGF in T cell acute lymphoblastic leukemia.

Lisa Demoen, Filip Matthijssens, Lindy Reunes et al.
1.00
Precursor T-Cell Lymphoblastic Leukemia-Lymphoma Animals Mice Humans Cell Line, Tumor
Adenosine Triphosphate Adenosine Diphosphate Mitochondrial ADP, ATP Translocases Binding Sites Mitochondria

Classifications MeSH