Serum neutralization of SARS-CoV-2 Omicron sublineages BA.1 and BA.2 in patients receiving monoclonal antibodies.


Journal

Nature medicine
ISSN: 1546-170X
Titre abrégé: Nat Med
Pays: United States
ID NLM: 9502015

Informations de publication

Date de publication:
06 2022
Historique:
received: 06 03 2022
accepted: 22 03 2022
pubmed: 25 3 2022
medline: 22 6 2022
entrez: 24 3 2022
Statut: ppublish

Résumé

The severe acute respiratory syndrome coronavirus 2 Omicron BA.1 sublineage has been supplanted in many countries by the BA.2 sublineage. BA.2 differs from BA.1 by about 21 mutations in its spike. In this study, we first compared the sensitivity of BA.1 and BA.2 to neutralization by nine therapeutic monoclonal antibodies (mAbs). In contrast to BA.1, BA.2 was sensitive to cilgavimab, partly inhibited by imdevimab and resistant to adintrevimab and sotrovimab. We then analyzed sera from 29 immunocompromised individuals up to 1 month after administration of Ronapreve (casirivimab and imdevimab) and/or Evusheld (cilgavimab and tixagevimab) antibody cocktails. All treated individuals displayed elevated antibody levels in their sera, which efficiently neutralized the Delta variant. Sera from Ronapreve recipients did not neutralize BA.1 and weakly inhibited BA.2. Neutralization of BA.1 and BA.2 was detected in 19 and 29 out of 29 Evusheld recipients, respectively. As compared to the Delta variant, neutralizing titers were more markedly decreased against BA.1 (344-fold) than BA.2 (nine-fold). We further report four breakthrough Omicron infections among the 29 individuals, indicating that antibody treatment did not fully prevent infection. Collectively, BA.1 and BA.2 exhibit noticeable differences in their sensitivity to therapeutic mAbs. Anti-Omicron neutralizing activity of Ronapreve and, to a lesser extent, that of Evusheld is reduced in patients' sera.

Identifiants

pubmed: 35322239
doi: 10.1038/s41591-022-01792-5
pii: 10.1038/s41591-022-01792-5
doi:

Substances chimiques

Antibodies, Monoclonal 0
Antibodies, Monoclonal, Humanized 0
Antibodies, Neutralizing 0
Antibodies, Viral 0
Membrane Glycoproteins 0
Spike Glycoprotein, Coronavirus 0
Viral Envelope Proteins 0
spike protein, SARS-CoV-2 0
tixagevimab 0
cilgavimab 1KUR4BN70F
sotrovimab 1MTK0BPN8V
imdevimab 2Z3DQD2JHM
casirivimab J0FI6WE1QN

Types de publication

Journal Article Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

1297-1302

Commentaires et corrections

Type : CommentIn

Informations de copyright

© 2022. The Author(s), under exclusive licence to Springer Nature America, Inc.

Références

Viana, R. et al. Rapid epidemic expansion of the SARS-CoV-2 Omicron variant in southern Africa. Nature 603, 679–686 (2022).
doi: 10.1038/s41586-022-04411-y
Carreño, J. M. et al. Activity of convalescent and vaccine serum against SARS-CoV-2 Omicron. Nature 602, 682–688 (2022).
doi: 10.1038/s41586-022-04399-5
Cameroni, E. et al. Broadly neutralizing antibodies overcome SARS-CoV-2 Omicron antigenic shift. Nature 602, 664–670 (2022).
doi: 10.1038/s41586-021-04386-2
Planas, D. et al. Considerable escape of SARS-CoV-2 Omicron to antibody neutralization. Nature 602, 671–675 (2021).
doi: 10.1038/s41586-021-04389-z
Garcia-Beltran, W. F. et al. mRNA-based COVID-19 vaccine boosters induce neutralizing immunity against SARS-CoV-2 Omicron variant. Cell 185, 457–466 (2022).
doi: 10.1016/j.cell.2021.12.033
Cao, Y. et al. Omicron escapes the majority of existing SARS-CoV-2 neutralizing antibodies. Nature 602, 657–663 (2022).
doi: 10.1038/s41586-021-04385-3
Cele, S. et al. Omicron extensively but incompletely escapes Pfizer BNT162b2 neutralization. Nature 602, 654–656 (2022).
doi: 10.1038/s41586-021-04387-1
Zost, S. J. et al. Potently neutralizing and protective human antibodies against SARS-CoV-2. Nature 584, 443–449 (2020).
doi: 10.1038/s41586-020-2548-6
Liu, L. et al. Striking antibody evasion manifested by the Omicron variant of SARS-CoV-2. Nature 602, 676–681 (2022).
doi: 10.1038/s41586-021-04388-0
VanBlargan, L. A. et al. An infectious SARS-CoV-2 B.1.1.529 Omicron virus escapes neutralization by therapeutic monoclonal antibodies. Nat. Med 28, 490–495 (2022).
doi: 10.1038/s41591-021-01678-y
Yamasoba, D. et al. Virological characteristics of SARS-CoV-2 BA.2 variant. Preprint at https://www.biorxiv.org/content/10.1101/2022.02.14.480335v1 (2022).
Zhou, H., Tada, T., Dcosta, B. M. & Landau, N. R. Neutralization of SARS-CoV-2 omicron BA.2 by therapeutic monoclonal antibodies. Preprint at https://www.biorxiv.org/content/10.1101/2022.02.15.480166v2 (2022).
Yu, J. et al. Neutralization of the SARS-CoV-2 Omicron BA.1 and BA.2 Variants. NEJM https://doi.org/10.1056/NEJMc2201849 (2022).
Iketani, S. et al. Antibody evasion properties of SARS-CoV-2 Omicron sublineages. Nature https://doi.org/10.1038/s41586-022-04594-4 (2022).
Cathcart, A. L. et al. The dual function monoclonal antibodies VIR-7831 and VIR-7832 demonstrate potent in vitro and in vivo activity against SARS-CoV-2. Preprint at https://www.biorxiv.org/content/10.1101/2021.03.09.434607v10 (2021).
Mykytyn, A. Z. et al. Omicron BA.1 and BA.2 are antigenically distinct SARS-CoV-2 variants. Preprint at https://www.biorxiv.org/content/10.1101/2022.02.23.481644v1.full (2022).
Crowe, Jr., J. E. C. Human antibodies for viral infections. Annu. Rev. Immunol. https://doi.org/10.1146/annurev-immunol-042718-041309 (2022).
Taylor, P. C. et al. Neutralizing monoclonal antibodies for treatment of COVID-19. Nat. Rev. Immunol. 21, 382–393 (2021).
doi: 10.1038/s41577-021-00542-x
O’Brien, M. P. et al. Subcutaneous REGEN-COV antibody combination to prevent Covid-19. N. Engl. J. Med. 385, 1184–1195 (2021).
doi: 10.1056/NEJMoa2109682
Loo, Y.-M. et al. The SARS-CoV-2 monoclonal antibody combination, AZD7442, is protective in non-human primates and has an extended half-life in humans. Sci. Transl. Med. 14, eabl8124 (2022).
doi: 10.1126/scitranslmed.abl8124
AstraZeneca. New analyses of two AZD7442 COVID-19 phase III trials in high-risk populations confirm robust efficacy and long-term prevention. https://www.astrazeneca.com/media-centre/press-releases/2021/new-analyses-of-two-azd7442-covid-19-phase-iii-trials-in-high-risk-populations-confirm-robust-efficacy-and-long-term-prevention.html (2021).
National Institutes of Health. All Variants. Reported in vitro Therapeutic Activity. https://opendata.ncats.nih.gov/variant/activity (2022).
Agarwal, A. et al. A living WHO guideline on drugs for covid-19. BMJ 370, m3379 (2020).
doi: 10.1136/bmj.m3379
Buchrieser, J. et al. Syncytia formation by SARS‐CoV‐2 infected cells. EMBO J. 39, e2020106267 (2020).
doi: 10.15252/embj.2020106267
Planas, D. et al. Sensitivity of infectious SARS-CoV-2 B.1.1.7 and B.1.351 variants to neutralizing antibodies. Nat. Med. 27, 917–924 (2021).
doi: 10.1038/s41591-021-01318-5
Shi, R. et al. A human neutralizing antibody targets the receptor-binding site of SARS-CoV-2. Nature 584, 120–124 (2020).
doi: 10.1038/s41586-020-2381-y
Kim, C. et al. A therapeutic neutralizing antibody targeting receptor binding domain of SARS-CoV-2 spike protein. Nat. Commun. 12, 288 (2021).
doi: 10.1038/s41467-020-20602-5
Rappazzo, C. G. et al. Broad and potent activity against SARS-like viruses by an engineered human monoclonal antibody. Science 371, 823–829 (2021).
doi: 10.1126/science.abf4830
Pinto, D. et al. Cross-neutralization of SARS-CoV-2 by a human monoclonal SARS-CoV antibody. Nature 583, 290–295 (2020).
doi: 10.1038/s41586-020-2349-y
Hansen, J. et al. Studies in humanized mice and convalescent humans yield a SARS-CoV-2 antibody cocktail. Science 369, 1010–1014 (2020).
doi: 10.1126/science.abd0827
Jones, B. E. et al. The neutralizing antibody, LY-CoV555, protects against SARS-CoV-2 infection in nonhuman primates. Sci. Transl. Med. 13, eabf1906 (2021).
doi: 10.1126/scitranslmed.abf1906
Liu, L. et al. Potent neutralizing antibodies against multiple epitopes on SARS-CoV-2 spike. Nature 584, 450–456 (2020).
doi: 10.1038/s41586-020-2571-7
Barnes, C. O. et al. SARS-CoV-2 neutralizing antibody structures inform therapeutic strategies. Nature 588, 682–687 (2020).
doi: 10.1038/s41586-020-2852-1
Haute Autorité de Santé. EVUSHELD (tixagévimab/cilgavimab) DÉCISION D’ACCÈS PRÉCOCE. https://www.has-sante.fr/jcms/p_3304034/fr/evusheld-tixagevimab/cilgavimab (2021).
Westendorf, K. et al. LY-CoV1404 (bebtelovimab) potently neutralizes SARS-CoV-2 variants. Preprint at https://www.biorxiv.org/content/10.1101/2021.04.30.442182v5 (2022).
Simon-Loriere, E. & Schwartz, O. Towards SARS-CoV-2 serotypes? Nat. Rev. Microbiol. 20, 187–188 (2022).
doi: 10.1038/s41579-022-00708-x
Planas, D. et al. Reduced sensitivity of SARS-CoV-2 variant Delta to antibody neutralization. Nature 596, 276–280 (2021).
doi: 10.1038/s41586-021-03777-9
Pelleau, S. et al. Kinetics of the severe acute respiratory syndrome coronavirus 2 antibody response and serological estimation of time since infection. J. Infect. Dis. 224, 1489–1499 (2021).
doi: 10.1093/infdis/jiab375
Sterlin, D. et al. IgA dominates the early neutralizing antibody response to SARS-CoV-2. Sci. Transl. Med. 13, eabd2223 (2021).
doi: 10.1126/scitranslmed.abd2223
Grzelak, L. et al. Sex differences in the evolution of neutralizing antibodies to severe acute respiratory syndrome coronavirus 2. J. Infect. Dis. 224, 983–988 (2021).
doi: 10.1093/infdis/jiab127
Hadjadj, J. et al. Immunogenicity of BNT162b2 vaccine against the Alpha and Delta variants in immunocompromised patients with systemic inflammatory diseases. Ann. Rheum. Dis. https://doi.org/10.1136/annrheumdis-2021-221508 (2022).

Auteurs

Timothée Bruel (T)

Institut Pasteur, Université Paris Cité, CNRS UMR3569, Virus and Immunity Unit, Paris, France. timothee.bruel@pasteur.fr.
Vaccine Research Institute, Créteil, France. timothee.bruel@pasteur.fr.

Jérôme Hadjadj (J)

Department of Internal Medicine, National Reference Center for Rare Systemic Autoimmune Diseases, AP-HP, APHP.CUP, Hôpital Cochin, Paris, France.

Piet Maes (P)

KU Leuven, Department of Microbiology, Immunology and Transplantation, Laboratory of Clinical and Epidemiological Virology, Leuven, Belgium.

Delphine Planas (D)

Institut Pasteur, Université Paris Cité, CNRS UMR3569, Virus and Immunity Unit, Paris, France.
Vaccine Research Institute, Créteil, France.

Aymeric Seve (A)

CHR d'Orléans, Service de Maladies Infectieuses, Orléans, France.

Isabelle Staropoli (I)

Institut Pasteur, Université Paris Cité, CNRS UMR3569, Virus and Immunity Unit, Paris, France.

Florence Guivel-Benhassine (F)

Institut Pasteur, Université Paris Cité, CNRS UMR3569, Virus and Immunity Unit, Paris, France.

Françoise Porrot (F)

Institut Pasteur, Université Paris Cité, CNRS UMR3569, Virus and Immunity Unit, Paris, France.

William-Henry Bolland (WH)

Institut Pasteur, Université Paris Cité, CNRS UMR3569, Virus and Immunity Unit, Paris, France.
Université Paris Cité, École doctorale BioSPC 562, Paris, France.

Yann Nguyen (Y)

Department of Internal Medicine, National Reference Center for Rare Systemic Autoimmune Diseases, AP-HP, APHP.CUP, Hôpital Cochin, Paris, France.

Marion Casadevall (M)

Department of Internal Medicine, National Reference Center for Rare Systemic Autoimmune Diseases, AP-HP, APHP.CUP, Hôpital Cochin, Paris, France.

Caroline Charre (C)

Université Paris Cité, Faculté de Médecine, Paris, France.
INSERM U1016, CNRS UMR8104, Institut Cochin, Paris, France.
AP-HP, Laboratoire de Virologie, CHU Cochin, Paris, France.

Hélène Péré (H)

INSERM, Functional Genomics of Solid Tumors (FunGeST), Centre de Recherche des Cordeliers, Université de Paris and Sorbonne Université, Paris, France.
Laboratoire de Virologie, Service de Microbiologie, Hôpital Européen Georges Pompidou, Assistance Publique des Hôpitaux de Paris, Paris, France.

David Veyer (D)

INSERM, Functional Genomics of Solid Tumors (FunGeST), Centre de Recherche des Cordeliers, Université de Paris and Sorbonne Université, Paris, France.
Laboratoire de Virologie, Service de Microbiologie, Hôpital Européen Georges Pompidou, Assistance Publique des Hôpitaux de Paris, Paris, France.

Matthieu Prot (M)

G5 Evolutionary Genomics of RNA Viruses, Institut Pasteur, Université Paris Cité, Paris, France.

Artem Baidaliuk (A)

G5 Evolutionary Genomics of RNA Viruses, Institut Pasteur, Université Paris Cité, Paris, France.

Lize Cuypers (L)

University Hospitals Leuven, Department of Laboratory Medicine, National Reference Centre for Respiratory Pathogens, Leuven, Belgium.

Cyril Planchais (C)

Humoral Immunology Laboratory, Institut Pasteur, Université Paris Cité, INSERM U1222, Paris, France.

Hugo Mouquet (H)

Humoral Immunology Laboratory, Institut Pasteur, Université Paris Cité, INSERM U1222, Paris, France.

Guy Baele (G)

KU Leuven, Department of Microbiology, Immunology and Transplantation, Laboratory of Clinical and Epidemiological Virology, Leuven, Belgium.

Luc Mouthon (L)

Department of Internal Medicine, National Reference Center for Rare Systemic Autoimmune Diseases, AP-HP, APHP.CUP, Hôpital Cochin, Paris, France.

Laurent Hocqueloux (L)

CHR d'Orléans, Service de Maladies Infectieuses, Orléans, France.

Etienne Simon-Loriere (E)

G5 Evolutionary Genomics of RNA Viruses, Institut Pasteur, Université Paris Cité, Paris, France.

Emmanuel André (E)

University Hospitals Leuven, Department of Laboratory Medicine, National Reference Centre for Respiratory Pathogens, Leuven, Belgium.
KU Leuven, Department of Microbiology, Immunology and Transplantation, Laboratory of Clinical Microbiology, Leuven, Belgium.

Benjamin Terrier (B)

Department of Internal Medicine, National Reference Center for Rare Systemic Autoimmune Diseases, AP-HP, APHP.CUP, Hôpital Cochin, Paris, France.

Thierry Prazuck (T)

CHR d'Orléans, Service de Maladies Infectieuses, Orléans, France.

Olivier Schwartz (O)

Institut Pasteur, Université Paris Cité, CNRS UMR3569, Virus and Immunity Unit, Paris, France. olivier.schwartz@pasteur.fr.
Vaccine Research Institute, Créteil, France. olivier.schwartz@pasteur.fr.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH