Serum neutralization of SARS-CoV-2 Omicron sublineages BA.1 and BA.2 in patients receiving monoclonal antibodies.
Journal
Nature medicine
ISSN: 1546-170X
Titre abrégé: Nat Med
Pays: United States
ID NLM: 9502015
Informations de publication
Date de publication:
06 2022
06 2022
Historique:
received:
06
03
2022
accepted:
22
03
2022
pubmed:
25
3
2022
medline:
22
6
2022
entrez:
24
3
2022
Statut:
ppublish
Résumé
The severe acute respiratory syndrome coronavirus 2 Omicron BA.1 sublineage has been supplanted in many countries by the BA.2 sublineage. BA.2 differs from BA.1 by about 21 mutations in its spike. In this study, we first compared the sensitivity of BA.1 and BA.2 to neutralization by nine therapeutic monoclonal antibodies (mAbs). In contrast to BA.1, BA.2 was sensitive to cilgavimab, partly inhibited by imdevimab and resistant to adintrevimab and sotrovimab. We then analyzed sera from 29 immunocompromised individuals up to 1 month after administration of Ronapreve (casirivimab and imdevimab) and/or Evusheld (cilgavimab and tixagevimab) antibody cocktails. All treated individuals displayed elevated antibody levels in their sera, which efficiently neutralized the Delta variant. Sera from Ronapreve recipients did not neutralize BA.1 and weakly inhibited BA.2. Neutralization of BA.1 and BA.2 was detected in 19 and 29 out of 29 Evusheld recipients, respectively. As compared to the Delta variant, neutralizing titers were more markedly decreased against BA.1 (344-fold) than BA.2 (nine-fold). We further report four breakthrough Omicron infections among the 29 individuals, indicating that antibody treatment did not fully prevent infection. Collectively, BA.1 and BA.2 exhibit noticeable differences in their sensitivity to therapeutic mAbs. Anti-Omicron neutralizing activity of Ronapreve and, to a lesser extent, that of Evusheld is reduced in patients' sera.
Identifiants
pubmed: 35322239
doi: 10.1038/s41591-022-01792-5
pii: 10.1038/s41591-022-01792-5
doi:
Substances chimiques
Antibodies, Monoclonal
0
Antibodies, Monoclonal, Humanized
0
Antibodies, Neutralizing
0
Antibodies, Viral
0
Membrane Glycoproteins
0
Spike Glycoprotein, Coronavirus
0
Viral Envelope Proteins
0
spike protein, SARS-CoV-2
0
tixagevimab
0
cilgavimab
1KUR4BN70F
sotrovimab
1MTK0BPN8V
imdevimab
2Z3DQD2JHM
casirivimab
J0FI6WE1QN
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
1297-1302Commentaires et corrections
Type : CommentIn
Informations de copyright
© 2022. The Author(s), under exclusive licence to Springer Nature America, Inc.
Références
Viana, R. et al. Rapid epidemic expansion of the SARS-CoV-2 Omicron variant in southern Africa. Nature 603, 679–686 (2022).
doi: 10.1038/s41586-022-04411-y
Carreño, J. M. et al. Activity of convalescent and vaccine serum against SARS-CoV-2 Omicron. Nature 602, 682–688 (2022).
doi: 10.1038/s41586-022-04399-5
Cameroni, E. et al. Broadly neutralizing antibodies overcome SARS-CoV-2 Omicron antigenic shift. Nature 602, 664–670 (2022).
doi: 10.1038/s41586-021-04386-2
Planas, D. et al. Considerable escape of SARS-CoV-2 Omicron to antibody neutralization. Nature 602, 671–675 (2021).
doi: 10.1038/s41586-021-04389-z
Garcia-Beltran, W. F. et al. mRNA-based COVID-19 vaccine boosters induce neutralizing immunity against SARS-CoV-2 Omicron variant. Cell 185, 457–466 (2022).
doi: 10.1016/j.cell.2021.12.033
Cao, Y. et al. Omicron escapes the majority of existing SARS-CoV-2 neutralizing antibodies. Nature 602, 657–663 (2022).
doi: 10.1038/s41586-021-04385-3
Cele, S. et al. Omicron extensively but incompletely escapes Pfizer BNT162b2 neutralization. Nature 602, 654–656 (2022).
doi: 10.1038/s41586-021-04387-1
Zost, S. J. et al. Potently neutralizing and protective human antibodies against SARS-CoV-2. Nature 584, 443–449 (2020).
doi: 10.1038/s41586-020-2548-6
Liu, L. et al. Striking antibody evasion manifested by the Omicron variant of SARS-CoV-2. Nature 602, 676–681 (2022).
doi: 10.1038/s41586-021-04388-0
VanBlargan, L. A. et al. An infectious SARS-CoV-2 B.1.1.529 Omicron virus escapes neutralization by therapeutic monoclonal antibodies. Nat. Med 28, 490–495 (2022).
doi: 10.1038/s41591-021-01678-y
Yamasoba, D. et al. Virological characteristics of SARS-CoV-2 BA.2 variant. Preprint at https://www.biorxiv.org/content/10.1101/2022.02.14.480335v1 (2022).
Zhou, H., Tada, T., Dcosta, B. M. & Landau, N. R. Neutralization of SARS-CoV-2 omicron BA.2 by therapeutic monoclonal antibodies. Preprint at https://www.biorxiv.org/content/10.1101/2022.02.15.480166v2 (2022).
Yu, J. et al. Neutralization of the SARS-CoV-2 Omicron BA.1 and BA.2 Variants. NEJM https://doi.org/10.1056/NEJMc2201849 (2022).
Iketani, S. et al. Antibody evasion properties of SARS-CoV-2 Omicron sublineages. Nature https://doi.org/10.1038/s41586-022-04594-4 (2022).
Cathcart, A. L. et al. The dual function monoclonal antibodies VIR-7831 and VIR-7832 demonstrate potent in vitro and in vivo activity against SARS-CoV-2. Preprint at https://www.biorxiv.org/content/10.1101/2021.03.09.434607v10 (2021).
Mykytyn, A. Z. et al. Omicron BA.1 and BA.2 are antigenically distinct SARS-CoV-2 variants. Preprint at https://www.biorxiv.org/content/10.1101/2022.02.23.481644v1.full (2022).
Crowe, Jr., J. E. C. Human antibodies for viral infections. Annu. Rev. Immunol. https://doi.org/10.1146/annurev-immunol-042718-041309 (2022).
Taylor, P. C. et al. Neutralizing monoclonal antibodies for treatment of COVID-19. Nat. Rev. Immunol. 21, 382–393 (2021).
doi: 10.1038/s41577-021-00542-x
O’Brien, M. P. et al. Subcutaneous REGEN-COV antibody combination to prevent Covid-19. N. Engl. J. Med. 385, 1184–1195 (2021).
doi: 10.1056/NEJMoa2109682
Loo, Y.-M. et al. The SARS-CoV-2 monoclonal antibody combination, AZD7442, is protective in non-human primates and has an extended half-life in humans. Sci. Transl. Med. 14, eabl8124 (2022).
doi: 10.1126/scitranslmed.abl8124
AstraZeneca. New analyses of two AZD7442 COVID-19 phase III trials in high-risk populations confirm robust efficacy and long-term prevention. https://www.astrazeneca.com/media-centre/press-releases/2021/new-analyses-of-two-azd7442-covid-19-phase-iii-trials-in-high-risk-populations-confirm-robust-efficacy-and-long-term-prevention.html (2021).
National Institutes of Health. All Variants. Reported in vitro Therapeutic Activity. https://opendata.ncats.nih.gov/variant/activity (2022).
Agarwal, A. et al. A living WHO guideline on drugs for covid-19. BMJ 370, m3379 (2020).
doi: 10.1136/bmj.m3379
Buchrieser, J. et al. Syncytia formation by SARS‐CoV‐2 infected cells. EMBO J. 39, e2020106267 (2020).
doi: 10.15252/embj.2020106267
Planas, D. et al. Sensitivity of infectious SARS-CoV-2 B.1.1.7 and B.1.351 variants to neutralizing antibodies. Nat. Med. 27, 917–924 (2021).
doi: 10.1038/s41591-021-01318-5
Shi, R. et al. A human neutralizing antibody targets the receptor-binding site of SARS-CoV-2. Nature 584, 120–124 (2020).
doi: 10.1038/s41586-020-2381-y
Kim, C. et al. A therapeutic neutralizing antibody targeting receptor binding domain of SARS-CoV-2 spike protein. Nat. Commun. 12, 288 (2021).
doi: 10.1038/s41467-020-20602-5
Rappazzo, C. G. et al. Broad and potent activity against SARS-like viruses by an engineered human monoclonal antibody. Science 371, 823–829 (2021).
doi: 10.1126/science.abf4830
Pinto, D. et al. Cross-neutralization of SARS-CoV-2 by a human monoclonal SARS-CoV antibody. Nature 583, 290–295 (2020).
doi: 10.1038/s41586-020-2349-y
Hansen, J. et al. Studies in humanized mice and convalescent humans yield a SARS-CoV-2 antibody cocktail. Science 369, 1010–1014 (2020).
doi: 10.1126/science.abd0827
Jones, B. E. et al. The neutralizing antibody, LY-CoV555, protects against SARS-CoV-2 infection in nonhuman primates. Sci. Transl. Med. 13, eabf1906 (2021).
doi: 10.1126/scitranslmed.abf1906
Liu, L. et al. Potent neutralizing antibodies against multiple epitopes on SARS-CoV-2 spike. Nature 584, 450–456 (2020).
doi: 10.1038/s41586-020-2571-7
Barnes, C. O. et al. SARS-CoV-2 neutralizing antibody structures inform therapeutic strategies. Nature 588, 682–687 (2020).
doi: 10.1038/s41586-020-2852-1
Haute Autorité de Santé. EVUSHELD (tixagévimab/cilgavimab) DÉCISION D’ACCÈS PRÉCOCE. https://www.has-sante.fr/jcms/p_3304034/fr/evusheld-tixagevimab/cilgavimab (2021).
Westendorf, K. et al. LY-CoV1404 (bebtelovimab) potently neutralizes SARS-CoV-2 variants. Preprint at https://www.biorxiv.org/content/10.1101/2021.04.30.442182v5 (2022).
Simon-Loriere, E. & Schwartz, O. Towards SARS-CoV-2 serotypes? Nat. Rev. Microbiol. 20, 187–188 (2022).
doi: 10.1038/s41579-022-00708-x
Planas, D. et al. Reduced sensitivity of SARS-CoV-2 variant Delta to antibody neutralization. Nature 596, 276–280 (2021).
doi: 10.1038/s41586-021-03777-9
Pelleau, S. et al. Kinetics of the severe acute respiratory syndrome coronavirus 2 antibody response and serological estimation of time since infection. J. Infect. Dis. 224, 1489–1499 (2021).
doi: 10.1093/infdis/jiab375
Sterlin, D. et al. IgA dominates the early neutralizing antibody response to SARS-CoV-2. Sci. Transl. Med. 13, eabd2223 (2021).
doi: 10.1126/scitranslmed.abd2223
Grzelak, L. et al. Sex differences in the evolution of neutralizing antibodies to severe acute respiratory syndrome coronavirus 2. J. Infect. Dis. 224, 983–988 (2021).
doi: 10.1093/infdis/jiab127
Hadjadj, J. et al. Immunogenicity of BNT162b2 vaccine against the Alpha and Delta variants in immunocompromised patients with systemic inflammatory diseases. Ann. Rheum. Dis. https://doi.org/10.1136/annrheumdis-2021-221508 (2022).