Emerging findings of glutamate-glutamine imbalance in the medial prefrontal cortex in attention deficit/hyperactivity disorder: systematic review and meta-analysis of spectroscopy studies.


Journal

European archives of psychiatry and clinical neuroscience
ISSN: 1433-8491
Titre abrégé: Eur Arch Psychiatry Clin Neurosci
Pays: Germany
ID NLM: 9103030

Informations de publication

Date de publication:
Dec 2022
Historique:
received: 27 11 2021
accepted: 01 03 2022
pubmed: 25 3 2022
medline: 16 11 2022
entrez: 24 3 2022
Statut: ppublish

Résumé

One of the main challenges in investigating the neurobiology of ADHD is our limited capacity to study its neurochemistry in vivo. Magnetic resonance spectroscopy (MRS) estimates metabolite concentrations within the brain, but approaches and findings have been heterogeneous. To assess differences in brain metabolites between patients with ADHD and healthy controls, we searched 12 databases screening for MRS studies. Studies were divided into 'children and adolescents' and 'adults' and meta-analyses were performed for each brain region with more than five studies. The quality of studies was assessed by the Newcastle-Ottawa Scale. Thirty-three studies met our eligibility criteria, including 874 patients with ADHD. Primary analyses revealed that the right medial frontal area of children with ADHD presented higher concentrations of a composite of glutamate and glutamine (p = 0.02, SMD = 0.53). Glutamate might be implicated in pruning and neurodegenerative processes as an excitotoxin, while glutamine excess might signal a glutamate depletion that could hinder neurotrophic activity. Both neuro metabolites could be implicated in the differential cortical thinning observed in patients with ADHD across all ages. Notably, more homogeneous designs and reporting guidelines are the key factors to determine how suitable MRS is for research and, perhaps, for clinical psychiatry. Results of this meta-analysis provided an overall map of the brain regions evaluated so far, addressed the role of glutamatergic metabolites in the pathophysiology of ADHD, and pointed to new perspectives for consistent use of the tool in the field.

Identifiants

pubmed: 35322293
doi: 10.1007/s00406-022-01397-6
pii: 10.1007/s00406-022-01397-6
doi:

Substances chimiques

Glutamine 0RH81L854J
Glutamic Acid 3KX376GY7L

Types de publication

Meta-Analysis Systematic Review Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

1395-1411

Informations de copyright

© 2022. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany.

Références

Association AP (2013) Diagnostic and statistical manual of mental disorders, 5th edition: Dsm-5, 5th edn. American Psychiatric Publishing
doi: 10.1176/appi.books.9780890425596
Wolraich ML, Hagan JF, Allan C et al (2019) Subcommittee on children and adolescents with attention-deficit/hyperactive disorder clinical practice guideline for the diagnosis, evaluation, and treatment of attention-deficit/hyperactivity disorder in children and adolescents. Pediatrics 144(4):e20192528. https://doi.org/10.1542/peds.2019-3997 (Pediatrics 145)
doi: 10.1542/peds.2019-3997 pubmed: 31570648
Rohde LA, Biederman J, Busnello EA et al (1999) ADHD in a school sample of Brazilian adolescents: a study of prevalence, comorbid conditions, and impairments. J Am Acad Child Adolesc Psychiatry 38:716–722. https://doi.org/10.1097/00004583-199906000-00019
doi: 10.1097/00004583-199906000-00019 pubmed: 10361790
Polanczyk G, de Lima MS, Horta BL et al (2007) The worldwide prevalence of ADHD: a systematic review and metaregression analysis. Am J Psychiatry 164:942–948. https://doi.org/10.1176/ajp.2007.164.6.942
doi: 10.1176/ajp.2007.164.6.942 pubmed: 17541055
Thomas R, Sanders S, Doust J et al (2015) Prevalence of attention-deficit/hyperactivity disorder: a systematic review and meta-analysis. Pediatrics 135:e994-1001. https://doi.org/10.1542/peds.2014-3482
doi: 10.1542/peds.2014-3482 pubmed: 25733754
Kessler RC, Adler L, Barkley R et al (2006) The prevalence and correlates of adult ADHD in the United States: results from the National Comorbidity Survey Replication. Am J Psychiatry 163:716–723. https://doi.org/10.1176/ajp.2006.163.4.716
doi: 10.1176/ajp.2006.163.4.716 pubmed: 16585449 pmcid: 2859678
Fayyad J, De Graaf R, Kessler R et al (2007) Cross-national prevalence and correlates of adult attention-deficit hyperactivity disorder. Br J Psychiatry 190:402–409. https://doi.org/10.1192/bjp.bp.106.034389
doi: 10.1192/bjp.bp.106.034389 pubmed: 17470954
Barkley RA, Fischer M, Smallish L, Fletcher K (2002) The persistence of attention-deficit/hyperactivity disorder into young adulthood as a function of reporting source and definition of disorder. J Abnorm Psychol 111:279–289
doi: 10.1037/0021-843X.111.2.279 pubmed: 12003449
Vitola ES, Bau CHD, Salum GA et al (2017) Exploring DSM-5 ADHD criteria beyond young adulthood: phenomenology, psychometric properties and prevalence in a large three-decade birth cohort. Psychol Med 47:744–754. https://doi.org/10.1017/S0033291716002853
doi: 10.1017/S0033291716002853 pubmed: 27866484
Danckaerts M, Sonuga-Barke EJS, Banaschewski T et al (2010) The quality of life of children with attention deficit/hyperactivity disorder: a systematic review. Eur Child Adolesc Psychiatry 19:83–105. https://doi.org/10.1007/s00787-009-0046-3
doi: 10.1007/s00787-009-0046-3 pubmed: 19633992
Biederman J, Faraone SV (2006) The effects of attention-deficit/hyperactivity disorder on employment and household income. MedGenMed 8:12
pubmed: 17406154 pmcid: 1781280
Faraone SV, Asherson P, Banaschewski T et al (2015) Attention-deficit/hyperactivity disorder. Nat Rev Dis Primers 1:15020. https://doi.org/10.1038/nrdp.2015.20
doi: 10.1038/nrdp.2015.20 pubmed: 27189265
Foley P (2007) Succi nervorum: a brief history of neurochemistry. J Neural Transm Suppl. https://doi.org/10.1007/978-3-211-73574-9_2
doi: 10.1007/978-3-211-73574-9_2 pubmed: 17982872
Dunn GA, Nigg JT, Sullivan EL (2019) Neuroinflammation as a risk factor for attention deficit hyperactivity disorder. Pharmacol Biochem Behav 182:22–34. https://doi.org/10.1016/j.pbb.2019.05.005
doi: 10.1016/j.pbb.2019.05.005 pubmed: 31103523 pmcid: 6855401
Del Sole A, Gambini A, Falini A et al (2002) In vivo neurochemistry with emission tomography and magnetic resonance spectroscopy: clinical applications. Eur Radiol 12:2582–2599. https://doi.org/10.1007/s00330-002-1419-x
doi: 10.1007/s00330-002-1419-x pubmed: 12271401
Wang X, Hu X, Xie P et al (2015) Comparison of magnetic resonance spectroscopy and positron emission tomography in detection of tumor recurrence in posttreatment of glioma: a diagnostic meta-analysis. Asia Pac J Clin Oncol 11:97–105. https://doi.org/10.1111/ajco.12202
doi: 10.1111/ajco.12202 pubmed: 24783970
Stagg C, Rothman D (2014) Magnetic resonance spectroscopy—tools for neuroscience research and emerging clinical applications, 1st edn. Elsevier, London
Yan H-D, Ishihara K, Serikawa T, Sasa M (2003) Activation by N-acetyl-L-aspartate of acutely dissociated hippocampal neurons in rats via metabotropic glutamate receptors. Epilepsia 44:1153–1159. https://doi.org/10.1046/j.1528-1157.2003.49402.x
doi: 10.1046/j.1528-1157.2003.49402.x pubmed: 12919386
Kantarci K, Petersen RC, Boeve BF et al (2004) 1H MR spectroscopy in common dementias. Neurology 63:1393–1398. https://doi.org/10.1212/01.wnl.0000141849.21256.ac
doi: 10.1212/01.wnl.0000141849.21256.ac pubmed: 15505154
Gillaspy GE (2011) The cellular language of myo-inositol signaling. New Phytol 192:823–839. https://doi.org/10.1111/j.1469-8137.2011.03939.x
doi: 10.1111/j.1469-8137.2011.03939.x pubmed: 22050576
Davanzo P, Thomas MA, Yue K et al (2001) Decreased anterior cingulate myo-inositol/creatine spectroscopy resonance with lithium treatment in children with bipolar disorder. Neuropsychopharmacology 24:359–369. https://doi.org/10.1016/S0893-133X(00)00207-4
doi: 10.1016/S0893-133X(00)00207-4 pubmed: 11182531
Rango M, Cogiamanian F, Marceglia S et al (2008) Myoinositol content in the human brain is modified by transcranial direct current stimulation in a matter of minutes: a 1H-MRS study. Magn Reson Med 60:782–789. https://doi.org/10.1002/mrm.21709
doi: 10.1002/mrm.21709 pubmed: 18816828
Xu S, Yang J, Li CQ et al (2005) Metabolic alterations in focally activated primary somatosensory cortex of alpha-chloralose-anesthetized rats measured by 1H MRS at 11.7 T. Neuroimage 28:401–409. https://doi.org/10.1016/j.neuroimage.2005.06.016
doi: 10.1016/j.neuroimage.2005.06.016 pubmed: 16182571
Hesslinger B, Thiel T, Tebartz van Elst L et al (2001) Attention-deficit disorder in adults with or without hyperactivity: where is the difference? A study in humans using short echo (1)H-magnetic resonance spectroscopy. Neurosci Lett 304:117–119. https://doi.org/10.1016/s0304-3940(01)01730-x
doi: 10.1016/s0304-3940(01)01730-x pubmed: 11335068
Perlov E, Philipsen A, Matthies S et al (2009) Spectroscopic findings in attention-deficit/hyperactivity disorder: review and meta-analysis. World J Biol Psychiatry 10:355–365. https://doi.org/10.1080/15622970802176032
doi: 10.1080/15622970802176032 pubmed: 18609427
Aoki Y, Inokuchi R, Suwa H, Aoki A (2013) Age-related change of neurochemical abnormality in attention-deficit hyperactivity disorder: a meta-analysis. Neurosci Biobehav Rev 37:1692–1701. https://doi.org/10.1016/j.neubiorev.2013.04.019
doi: 10.1016/j.neubiorev.2013.04.019 pubmed: 23735885
Bae S, Han DH, Kim SM et al (2016) Neurochemical correlates of internet game play in adolescents with attention deficit hyperactivity disorder: a proton magnetic resonance spectroscopy (MRS) study. Psychiatry Res Neuroimaging 254:10–17. https://doi.org/10.1016/j.pscychresns.2016.05.006
doi: 10.1016/j.pscychresns.2016.05.006 pubmed: 27295400
Bauer J, Werner A, Kohl W et al (2018) Hyperactivity and impulsivity in adult attention-deficit/hyperactivity disorder is related to glutamatergic dysfunction in the anterior cingulate cortex. World J Biol Psychiatry 19:538–546. https://doi.org/10.1080/15622975.2016.1262060
doi: 10.1080/15622975.2016.1262060 pubmed: 27973969
Benamor L (2014) (1)H-Magnetic resonance spectroscopy study of stimulant medication effect on brain metabolites in French Canadian children with attention deficit hyperactivity disorder. Neuropsychiatr Dis Treat 10:47–54. https://doi.org/10.2147/NDT.S52338
doi: 10.2147/NDT.S52338 pubmed: 24476627 pmcid: 3901735
Bollmann S, Ghisleni C, Poil SS et al (2015) Developmental changes in gamma-aminobutyric acid levels in attention-deficit/hyperactivity disorder. Transl Psychiatry 5:e589. https://doi.org/10.1038/tp.2015.79
doi: 10.1038/tp.2015.79 pubmed: 26101852 pmcid: 4490289
Ende G, Cackowski S, Van Eijk J et al (2016) Impulsivity and aggression in female BPD and ADHD patients: association with ACC glutamate and GABA concentrations. Neuropsychopharmacology 41:410–418. https://doi.org/10.1038/npp.2015.153
doi: 10.1038/npp.2015.153 pubmed: 26040503
Endres D, Perlov E, Maier S et al (2015) Normal neurochemistry in the prefrontal and cerebellar brain of adults with attention-deficit hyperactivity disorder. Front Behav Neurosci 9:242. https://doi.org/10.3389/fnbeh.2015.00242
doi: 10.3389/fnbeh.2015.00242 pubmed: 26441572 pmcid: 4585345
Hai T, Duffy H, Lemay J-F et al (2020) Neurochemical correlates of executive function in children with attention-deficit/hyperactivity disorder. J Can Acad Child Adolesc Psychiatry 29:15–25
pubmed: 32194648 pmcid: 7065568
Maltezos S, Horder J, Coghlan S et al (2014) Glutamate/glutamine and neuronal integrity in adults with ADHD: a proton MRS study. Transl Psychiatry 4:e373. https://doi.org/10.1038/tp.2014.11
doi: 10.1038/tp.2014.11 pubmed: 24643164 pmcid: 3966039
Naaijen J, Forde NJ, Lythgoe DJ et al (2017) Fronto-striatal glutamate in children with Tourette’s disorder and attention-deficit/hyperactivity disorder. Neuroimage Clin 13:16–23. https://doi.org/10.1016/j.nicl.2016.11.013
doi: 10.1016/j.nicl.2016.11.013 pubmed: 27909683
Naaijen J, Lythgoe DJ, Zwiers MP et al (2018) Anterior cingulate cortex glutamate and its association with striatal functioning during cognitive control. Eur Neuropsychopharmacol 28:381–391. https://doi.org/10.1016/j.euroneuro.2018.01.002
doi: 10.1016/j.euroneuro.2018.01.002 pubmed: 29395624
Puts NA, Ryan M, Oeltzschner G et al (2020) Reduced striatal GABA in unmedicated children with ADHD at 7T. Psychiatry Res Neuroimaging 301:111082. https://doi.org/10.1016/j.pscychresns.2020.111082
doi: 10.1016/j.pscychresns.2020.111082 pubmed: 32438277
Tafazoli S, O’Neill J, Bejjani A et al (2013) 1H MRSI of middle frontal gyrus in pediatric ADHD. J Psychiatr Res 47:505–512. https://doi.org/10.1016/j.jpsychires.2012.11.011
doi: 10.1016/j.jpsychires.2012.11.011 pubmed: 23273650
O’Neill J, O’Connor MJ, Yee V et al (2019) Differential neuroimaging indices in prefrontal white matter in prenatal alcohol-associated ADHD versus idiopathic ADHD. Birth Defects Res 111:797–811. https://doi.org/10.1002/bdr2.1460
doi: 10.1002/bdr2.1460 pubmed: 30694611 pmcid: 6650301
Jamie N (2014) Spectral quantification and pitfalls in interpreting magnetic resonance spectroscopy data: what to look out for. In: Stagg C, Rothman D (eds) Magnetic resonance spectroscopy: tools for neuroscience research and emerging clinical applications, 1st edn. Elsevier, London, pp 49–67
Vidor MV, Panzenhagen AC, Martins AR et al (2021) Attention-deficit/hyperactivity disorder and brain metabolites from proton magnetic resonance spectroscopy: a systematic review and meta-analysis protocol. Trends Psychiatry Psychother 43:1–8. https://doi.org/10.47626/2237-6089-2019-0111
doi: 10.47626/2237-6089-2019-0111 pubmed: 33681905 pmcid: 7932040
Liberati A, Altman DG, Tetzlaff J et al (2009) The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate healthcare interventions: explanation and elaboration. BMJ 339:b2700. https://doi.org/10.1136/bmj.b2700
doi: 10.1136/bmj.b2700 pubmed: 19622552 pmcid: 2714672
Moher D, Liberati A, Tetzlaff J et al (2009) Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. BMJ 339:b2535. https://doi.org/10.1136/bmj.b2535
doi: 10.1136/bmj.b2535 pubmed: 19622551 pmcid: 2714657
Higgins JPT, Thomas J, Chandler J, et al (2020) Cochrane Handbook for Systematic Reviews of Interventions version 6.1 (updated September 2020). http://www.training.cochrane.org/handbook . Accessed 28 Jul 2020
Pires GN, Bezerra AG, Tufik S, Andersen ML (2016) Effects of experimental sleep deprivation on anxiety-like behavior in animal research: systematic review and meta-analysis. Neurosci Biobehav Rev 68:575–589. https://doi.org/10.1016/j.neubiorev.2016.06.028
doi: 10.1016/j.neubiorev.2016.06.028 pubmed: 27345144
Pires GN, Bezerra AG, Tufik S, Andersen ML (2016) Effects of acute sleep deprivation on state anxiety levels: a systematic review and meta-analysis. Sleep Med 24:109–118. https://doi.org/10.1016/j.sleep.2016.07.019
doi: 10.1016/j.sleep.2016.07.019 pubmed: 27810176
Ankit R (2020) WebPlotDigitizer. Automeris, Pacifica, California, USA
Li BSY, Wang H, Gonen O (2003) Metabolite ratios to assumed stable creatine level may confound the quantification of proton brain MR spectroscopy. Magn Reson Imaging 21:923–928. https://doi.org/10.1016/s0730-725x(03)00181-4
doi: 10.1016/s0730-725x(03)00181-4 pubmed: 14599543
The Ottawa Hospital (2019) The Newcastle–Ottawa Scale (NOS) for assessing the quality of nonrandomised studies in meta-analyses. http://www.ohri.ca/programs/clinical_epidemiology/oxford.asp . Accessed 22 Nov 2019
Sterne JAC, Sutton AJ, Ioannidis JPA et al (2011) Recommendations for examining and interpreting funnel plot asymmetry in meta-analyses of randomised controlled trials. BMJ 343:d4002. https://doi.org/10.1136/bmj.d4002
doi: 10.1136/bmj.d4002 pubmed: 21784880
Higgins JPT, Thompson SG (2002) Quantifying heterogeneity in a meta-analysis. Stat Med 21:1539–1558. https://doi.org/10.1002/sim.1186
doi: 10.1002/sim.1186 pubmed: 12111919
Copenhagen: The Nordic Cochrane Centre, The Cochrane Collaboration (2014) Review Manager (RevMan)
Haynes W (2013) Benjamini–Hochberg method. In: Dubitzky W, Wolkenhauer O, Cho K-H, Yokota H (eds) Encyclopedia of systems biology. Springer, New York, pp 78–78
doi: 10.1007/978-1-4419-9863-7_1215
Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate: a practical and powerful approach to multiple testing. J Roy Stat Soc: Ser B (Methodol) 57:289–300. https://doi.org/10.1111/j.2517-6161.1995.tb02031.x
doi: 10.1111/j.2517-6161.1995.tb02031.x
Alvarado A, Zapata G, Diaz L et al (2003) Proton magnetic resonance spectroscopy and electroencephalographicactivity in attention deficit disorder. Vitae Academia Biomédica Digital
Arcos-Burgos M, Londoño AC, Pineda DA et al (2012) Analysis of brain metabolism by proton magnetic resonance spectroscopy (1H-MRS) in attention-deficit/hyperactivity disorder suggests a generalized differential ontogenic pattern from controls. Atten Defic Hyperact Disord 4:205–212. https://doi.org/10.1007/s12402-012-0088-0
doi: 10.1007/s12402-012-0088-0 pubmed: 23012086 pmcid: 3508358
Carrey NJ, MacMaster FP, Gaudet L, Schmidt MH (2007) Striatal creatine and glutamate/glutamine in attention-deficit/hyperactivity disorder. J Child Adolesc Psychopharmacol 17:11–17. https://doi.org/10.1089/cap.2006.0008
doi: 10.1089/cap.2006.0008 pubmed: 17343550
Colla M, Ende G, Alm B et al (2008) Cognitive MR spectroscopy of anterior cingulate cortex in ADHD: elevated choline signal correlates with slowed hit reaction times. J Psychiatr Res 42:587–595. https://doi.org/10.1016/j.jpsychires.2007.06.006
doi: 10.1016/j.jpsychires.2007.06.006 pubmed: 17698080
Courvoisie H, Hooper SR, Fine C et al (2004) Neurometabolic functioning and neuropsychological correlates in children with ADHD-H: preliminary findings. J Neuropsychiatry Clin Neurosci 16:63–69. https://doi.org/10.1176/jnp.16.1.63
doi: 10.1176/jnp.16.1.63 pubmed: 14990761
Dramsdahl M, Ersland L, Plessen KJ et al (2011) Adults with attention-deficit/hyperactivity disorder—a brain magnetic resonance spectroscopy study. Front Psychiatry 2:65. https://doi.org/10.3389/fpsyt.2011.00065
doi: 10.3389/fpsyt.2011.00065 pubmed: 22131979 pmcid: 3222884
Edden RAE, Crocetti D, Zhu H et al (2012) Reduced GABA concentration in attention-deficit/hyperactivity disorder. Arch Gen Psychiatry 69:750–753. https://doi.org/10.1001/archgenpsychiatry.2011.2280
doi: 10.1001/archgenpsychiatry.2011.2280 pubmed: 22752239 pmcid: 3970207
Fayed N, Modrego PJ (2005) Comparative study of cerebral white matter in autism and attention-deficit/hyperactivity disorder by means of magnetic resonance spectroscopy. Acad Radiol 12:566–569. https://doi.org/10.1016/j.acra.2005.01.016
doi: 10.1016/j.acra.2005.01.016 pubmed: 15866128
Fayed N, Modrego PJ, Castillo J, Dávila J (2007) Evidence of brain dysfunction in attention deficit-hyperactivity disorder: a controlled study with proton magnetic resonance spectroscopy. Acad Radiol 14:1029–1035. https://doi.org/10.1016/j.acra.2007.05.017
doi: 10.1016/j.acra.2007.05.017 pubmed: 17707309
Ferreira PEMS, Palmini A, Bau CHD et al (2009) Differentiating attention-deficit/hyperactivity disorder inattentive and combined types: a (1)H-magnetic resonance spectroscopy study of fronto-striato-thalamic regions. J Neural Transm 116:623–629. https://doi.org/10.1007/s00702-009-0191-3
doi: 10.1007/s00702-009-0191-3 pubmed: 19399368
Hammerness P, Biederman J, Petty C et al (2012) Brain biochemical effects of methylphenidate treatment using proton magnetic spectroscopy in youth with attention-deficit hyperactivity disorder: a controlled pilot study. CNS Neurosci Ther 18:34–40. https://doi.org/10.1111/j.1755-5949.2010.00226.x
doi: 10.1111/j.1755-5949.2010.00226.x pubmed: 21143432
Jin Z, Zang YF, Zeng YW et al (2001) Striatal neuronal loss or dysfunction and choline rise in children with attention-deficit hyperactivity disorder: a 1H-magnetic resonance spectroscopy study. Neurosci Lett 315:45–48. https://doi.org/10.1016/s0304-3940(01)02315-1
doi: 10.1016/s0304-3940(01)02315-1 pubmed: 11711211
MacMaster FP, Carrey N, Sparkes S, Kusumakar V (2003) Proton spectroscopy in medication-free pediatric attention-deficit/hyperactivity disorder. Biol Psychiatry 53:184–187. https://doi.org/10.1016/s0006-3223(02)01401-4
doi: 10.1016/s0006-3223(02)01401-4 pubmed: 12547476
Moore CM, Biederman J, Wozniak J et al (2006) Differences in brain chemistry in children and adolescents with attention deficit hyperactivity disorder with and without comorbid bipolar disorder: a proton magnetic resonance spectroscopy study. Am J Psychiatry 163:316–318. https://doi.org/10.1176/appi.ajp.163.2.316
doi: 10.1176/appi.ajp.163.2.316 pubmed: 16449488 pmcid: 4068129
Perlov E, Philipsen A, Hesslinger B et al (2007) Reduced cingulate glutamate/glutamine-to-creatine ratios in adult patients with attention deficit/hyperactivity disorder—a magnet resonance spectroscopy study. J Psychiatr Res 41:934–941. https://doi.org/10.1016/j.jpsychires.2006.12.007
doi: 10.1016/j.jpsychires.2006.12.007 pubmed: 17303167
Perlov E, Tebarzt van Elst L, Buechert M et al (2010) H
doi: 10.1016/j.jpsychires.2010.02.016 pubmed: 20332052
Soliva JC, Moreno A, Fauquet J et al (2010) Cerebellar neurometabolite abnormalities in pediatric attention/deficit hyperactivity disorder: a proton MR spectroscopic study. Neurosci Lett 470:60–64. https://doi.org/10.1016/j.neulet.2009.12.056
doi: 10.1016/j.neulet.2009.12.056 pubmed: 20036717
Sparkes SJ, MacMaster FP, Carrey NC (2004) Proton magnetic resonance spectroscopy and cognitivefunction in pediatric attention-deficit/hyperactive disorder
Sun L, Jin Z, Zang Y et al (2005) Differences between attention-deficit disorder with and without hyperactivity: a 1H-magnetic resonance spectroscopy study. Brain Dev 27:340–344. https://doi.org/10.1016/j.braindev.2004.09.004
doi: 10.1016/j.braindev.2004.09.004 pubmed: 16023548
de Vasconcelos MM (2005) Utilidade da espectroscopia por RM no diagnóstico do TDAH. Doctoral dissertation, Universidade Federal Fluminense
Yang P, Wu M-T, Dung S-S, Ko C-W (2010) Short-TE proton magnetic resonance spectroscopy investigation in adolescents with attention-deficit hyperactivity disorder. Psychiatry Res 181:199–203. https://doi.org/10.1016/j.pscychresns.2009.10.001
doi: 10.1016/j.pscychresns.2009.10.001 pubmed: 20153148
Yeo RA, Hill DE, Campbell RA et al (2003) Proton magnetic resonance spectroscopy investigation of the right frontal lobe in children with attention-deficit/hyperactivity disorder. J Am Acad Child Adolesc Psychiatry 42:303–310. https://doi.org/10.1097/00004583-200303000-00010
doi: 10.1097/00004583-200303000-00010 pubmed: 12595783
Bechara A, Damasio H, Damasio AR, Lee GP (1999) Different contributions of the human amygdala and ventromedial prefrontal cortex to decision-making. J Neurosci 19:5473–5481
doi: 10.1523/JNEUROSCI.19-13-05473.1999 pubmed: 10377356 pmcid: 6782338
Bechara A, Tranel D, Damasio H (2000) Characterization of the decision-making deficit of patients with ventromedial prefrontal cortex lesions. Brain 123(Pt 11):2189–2202. https://doi.org/10.1093/brain/123.11.2189
doi: 10.1093/brain/123.11.2189 pubmed: 11050020
Hänsel A, von Känel R (2008) The ventro-medial prefrontal cortex: a major link between the autonomic nervous system, regulation of emotion, and stress reactivity? Biopsychosoc Med 2:21. https://doi.org/10.1186/1751-0759-2-21
doi: 10.1186/1751-0759-2-21 pubmed: 18986513 pmcid: 2590602
Shamay-Tsoory SG, Tomer R, Berger BD, Aharon-Peretz J (2003) Characterization of empathy deficits following prefrontal brain damage: the role of the right ventromedial prefrontal cortex. J Cogn Neurosci 15:324–337. https://doi.org/10.1162/089892903321593063
doi: 10.1162/089892903321593063 pubmed: 12729486
Beadle JN, Paradiso S, Tranel D (2018) Ventromedial prefrontal cortex is critical for helping others who are suffering. Front Neurol 9:288. https://doi.org/10.3389/fneur.2018.00288
doi: 10.3389/fneur.2018.00288 pubmed: 29887825 pmcid: 5981225
Boes AD, Bechara A, Tranel D et al (2009) Right ventromedial prefrontal cortex: a neuroanatomical correlate of impulse control in boys. Soc Cogn Affect Neurosci 4:1–9. https://doi.org/10.1093/scan/nsn035
doi: 10.1093/scan/nsn035 pubmed: 19015086
Faraone SV, Biederman J, Mick E (2006) The age-dependent decline of attention deficit hyperactivity disorder: a meta-analysis of follow-up studies. Psychol Med 36:159–165. https://doi.org/10.1017/S003329170500471X
doi: 10.1017/S003329170500471X pubmed: 16420712
Mitchell ND, Baker GB (2010) An update on the role of glutamate in the pathophysiology of depression. Acta Psychiatr Scand 122:192–210. https://doi.org/10.1111/j.1600-0447.2009.01529.x
doi: 10.1111/j.1600-0447.2009.01529.x pubmed: 20105149
Ramadan S, Lin A, Stanwell P (2013) Glutamate and glutamine: a review of in vivo MRS in the human brain. NMR Biomed 26:1630–1646. https://doi.org/10.1002/nbm.3045
doi: 10.1002/nbm.3045 pubmed: 24123328
Maria YL, Price AN, Puts NAJ et al (2021) Simultaneous quantification of GABA, Glx and GSH in the neonatal human brain using magnetic resonance spectroscopy. Neuroimage 233:117930. https://doi.org/10.1016/j.neuroimage.2021.117930
doi: 10.1016/j.neuroimage.2021.117930 pubmed: 33711485
Sonnewald U, Schousboe A (2016) Introduction to the Glutamate–Glutamine cycle. Adv Neurobiol 13:1–7. https://doi.org/10.1007/978-3-319-45096-4_1
doi: 10.1007/978-3-319-45096-4_1 pubmed: 27885624
Erecińska M, Silver IA (1990) Metabolism and role of glutamate in mammalian brain. Prog Neurobiol 35:245–296. https://doi.org/10.1016/0301-0082(90)90013-7
doi: 10.1016/0301-0082(90)90013-7 pubmed: 1980745
Cooper AJL (2012) The role of glutamine synthetase and glutamate dehydrogenase in cerebral ammonia homeostasis. Neurochem Res 37:2439–2455. https://doi.org/10.1007/s11064-012-0803-4
doi: 10.1007/s11064-012-0803-4 pubmed: 22618691 pmcid: 3490058
de Graaf AA, Deutz NE, Bosman DK et al (1991) The use of in vivo proton NMR to study the effects of hyperammonemia in the rat cerebral cortex. NMR Biomed 4:31–37. https://doi.org/10.1002/nbm.1940040106
doi: 10.1002/nbm.1940040106 pubmed: 1674207
Bosman DK, Deutz NE, De Graaf AA et al (1990) Changes in brain metabolism during hyperammonemia and acute liver failure: results of a comparative 1H-NMR spectroscopy and biochemical investigation. Hepatology 12:281–290. https://doi.org/10.1002/hep.1840120215
doi: 10.1002/hep.1840120215 pubmed: 1975248
Balkhi HM, Gul T, Banday MZ, Haq E (2014) Glutamate excitotoxicity: an insight into the mechanism. Int J Adv Res 2:361–373
Shaw P, Gornick M, Lerch J et al (2007) Polymorphisms of the dopamine D4 receptor, clinical outcome, and cortical structure in attention-deficit/hyperactivity disorder. Arch Gen Psychiatry 64:921–931. https://doi.org/10.1001/archpsyc.64.8.921
doi: 10.1001/archpsyc.64.8.921 pubmed: 17679637
Verma A, Kumar I, Verma N et al (2016) Magnetic resonance spectroscopy—revisiting the biochemical and molecular milieu of brain tumors. BBA Clin 5:170–178. https://doi.org/10.1016/j.bbacli.2016.04.002
doi: 10.1016/j.bbacli.2016.04.002 pubmed: 27158592 pmcid: 4845155
Ross B, Bluml S (2001) Magnetic resonance spectroscopy of the human brain. Anat Rec 265:54–84. https://doi.org/10.1002/ar.1058
doi: 10.1002/ar.1058 pubmed: 11323770
Xin L, Tkáč I (2017) A practical guide to in vivo proton magnetic resonance spectroscopy at high magnetic fields. Anal Biochem 529:30–39. https://doi.org/10.1016/j.ab.2016.10.019
doi: 10.1016/j.ab.2016.10.019 pubmed: 27773654
Jordan HS, Bert R, Chew P, et al (2003) Magnetic resonance spectroscopy for brain tumors. Agency for Healthcare Research and Quality (US), Rockville
AIM Specialty Health (2017) Appropriate use criteria: magnetic resonance spectroscopy. AIM Specialty Health
Glunde K, Jiang L, Moestue SA, Gribbestad IS (2011) MRS and MRSI guidance in molecular medicine: targeting and monitoring of choline and glucose metabolism in cancer. NMR Biomed 24:673–690. https://doi.org/10.1002/nbm.1751
doi: 10.1002/nbm.1751 pubmed: 21793073 pmcid: 3146026
De Stefano N, Filippi M, Miller D et al (2007) Guidelines for using proton MR spectroscopy in multicenter clinical MS studies. Neurology 69:1942–1952. https://doi.org/10.1212/01.wnl.0000291557.62706.d3
doi: 10.1212/01.wnl.0000291557.62706.d3 pubmed: 17998486
Paxinos G, Watson C (2013) The rat brain in stereotaxic coordinates, 7th edn. Academic Press, Amsterdam
Ferry B, Gervasoni D, Vogt C (2014) Stereotaxic neurosurgery in laboratory rodent. Springer Paris, Paris
doi: 10.1007/978-2-8178-0472-9
De Vloo P, Nuttin B (2019) Stereotaxy in rat models: current state of the art, proposals to improve targeting accuracy and reporting guideline. Behav Brain Res 364:457–463. https://doi.org/10.1016/j.bbr.2017.10.035
doi: 10.1016/j.bbr.2017.10.035 pubmed: 29101026
Carrey N, MacMaster FP, Fogel J et al (2003) Metabolite changes resulting from treatment in children with ADHD: a 1H-MRS study. Clin Neuropharmacol 26:218–221. https://doi.org/10.1097/00002826-200307000-00013
doi: 10.1097/00002826-200307000-00013 pubmed: 12897644
Wiguna T, Guerrero APS, Wibisono S, Sastroasmoro S (2012) Effect of 12-week administration of 20-mg long-acting methylphenidate on Glu/Cr, NAA/Cr, Cho/Cr, and mI/Cr ratios in the prefrontal cortices of school-age children in Indonesia: a study using 1H magnetic resonance spectroscopy (MRS). Clin Neuropharmacol 35:81–85. https://doi.org/10.1097/WNF.0b013e3182452572
doi: 10.1097/WNF.0b013e3182452572 pubmed: 22318191
Spencer TJ, Brown A, Seidman LJ et al (2013) Effect of psychostimulants on brain structure and function in ADHD: a qualitative literature review of magnetic resonance imaging-based neuroimaging studies. J Clin Psychiatry 74:902–917. https://doi.org/10.4088/JCP.12r08287
doi: 10.4088/JCP.12r08287 pubmed: 24107764 pmcid: 3801446
Licata SC, Renshaw PF (2010) Neurochemistry of drug action: insights from proton magnetic resonance spectroscopic imaging and their relevance to addiction. Ann N Y Acad Sci 1187:148–171. https://doi.org/10.1111/j.1749-6632.2009.05143.x
doi: 10.1111/j.1749-6632.2009.05143.x pubmed: 20201852 pmcid: 3040110
Schmaal L, Veltman DJ, Nederveen A et al (2012) N-acetylcysteine normalizes glutamate levels in cocaine-dependent patients: a randomized crossover magnetic resonance spectroscopy study. Neuropsychopharmacology 37:2143–2152. https://doi.org/10.1038/npp.2012.66
doi: 10.1038/npp.2012.66 pubmed: 22549117 pmcid: 3398721
Bolton J, Moore GJ, MacMillan S et al (2001) Case study: caudate glutamatergic changes with paroxetine persist after medication discontinuation in pediatric OCD. J Am Acad Child Adolesc Psychiatry 40:903–906. https://doi.org/10.1097/00004583-200108000-00011
doi: 10.1097/00004583-200108000-00011 pubmed: 11501689
Taylor M, Murphy SE, Selvaraj S et al (2008) Differential effects of citalopram and reboxetine on cortical Glx measured with proton MR spectroscopy. J Psychopharmacol (Oxford) 22:473–476. https://doi.org/10.1177/0269881107081510
doi: 10.1177/0269881107081510

Auteurs

Marcos Vinícius Vidor (MV)

Programa de Transtornos de Déficit de Atenção/Hiperatividade em Adultos (ProDAH-A), Centro de Pesquisa Clínica (CPC), Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, RS, Brazil.
Programa de Pós-Graduação em Psiquiatria e Ciências do Comportamento, Universidade Federal do Rio Grande do Sul (UFRGS), R. Ramiro Barcelos, 2400, 2º andar, Porto Alegre, RS, 90035-003, Brazil.

Alana Castro Panzenhagen (AC)

Programa de Transtornos de Déficit de Atenção/Hiperatividade em Adultos (ProDAH-A), Centro de Pesquisa Clínica (CPC), Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, RS, Brazil.
Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, UFRGS, Porto Alegre, RS, Brazil.

Alexandre Ribeiro Martins (AR)

Serdil-Clínica de Radiologia e Diagnóstico de Imagem, Porto Alegre, RS, Brazil.

Renata Basso Cupertino (RB)

Programa de Transtornos de Déficit de Atenção/Hiperatividade em Adultos (ProDAH-A), Centro de Pesquisa Clínica (CPC), Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, RS, Brazil.
Department of Psychiatry, University of Vermont, Burlington, VT, USA.

Cibele Edom Bandeira (CE)

Programa de Transtornos de Déficit de Atenção/Hiperatividade em Adultos (ProDAH-A), Centro de Pesquisa Clínica (CPC), Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, RS, Brazil.
Departamento de Genética, Instituto de Biociências, UFRGS, Porto Alegre, RS, Brazil.

Felipe Almeida Picon (FA)

Programa de Transtornos de Déficit de Atenção/Hiperatividade em Adultos (ProDAH-A), Centro de Pesquisa Clínica (CPC), Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, RS, Brazil.

Bruna Santos da Silva (BS)

Programa de Transtornos de Déficit de Atenção/Hiperatividade em Adultos (ProDAH-A), Centro de Pesquisa Clínica (CPC), Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, RS, Brazil.

Eduardo Schneider Vitola (ES)

Programa de Transtornos de Déficit de Atenção/Hiperatividade em Adultos (ProDAH-A), Centro de Pesquisa Clínica (CPC), Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, RS, Brazil.

Luis Augusto Rohde (LA)

Programa de Pós-Graduação em Psiquiatria e Ciências do Comportamento, Universidade Federal do Rio Grande do Sul (UFRGS), R. Ramiro Barcelos, 2400, 2º andar, Porto Alegre, RS, 90035-003, Brazil.
Instituto Nacional de Psiquiatria do Desenvolvimento (INPD), Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), Porto Alegre, RS, Brazil.

Diego Luiz Rovaris (DL)

Programa de Transtornos de Déficit de Atenção/Hiperatividade em Adultos (ProDAH-A), Centro de Pesquisa Clínica (CPC), Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, RS, Brazil.
Instituto de Ciências Biomédicas, Departamento de Fisiologia e Biofísica, Universidade de São Paulo (USP), São Paulo, SP, Brazil.

Claiton Henrique Dotto Bau (CHD)

Programa de Transtornos de Déficit de Atenção/Hiperatividade em Adultos (ProDAH-A), Centro de Pesquisa Clínica (CPC), Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, RS, Brazil.
Departamento de Genética, Instituto de Biociências, UFRGS, Porto Alegre, RS, Brazil.

Eugênio Horácio Grevet (EH)

Programa de Transtornos de Déficit de Atenção/Hiperatividade em Adultos (ProDAH-A), Centro de Pesquisa Clínica (CPC), Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, RS, Brazil. eugenio.grevet@ufrgs.br.
Programa de Pós-Graduação em Psiquiatria e Ciências do Comportamento, Universidade Federal do Rio Grande do Sul (UFRGS), R. Ramiro Barcelos, 2400, 2º andar, Porto Alegre, RS, 90035-003, Brazil. eugenio.grevet@ufrgs.br.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH