The dysbiosis gut microbiota induces the alternation of metabolism and imbalance of Th17/Treg in OSA patients.
Gut microbiota
Inflammation
Obstructive sleep apnea
Th17/Treg cells
Journal
Archives of microbiology
ISSN: 1432-072X
Titre abrégé: Arch Microbiol
Pays: Germany
ID NLM: 0410427
Informations de publication
Date de publication:
23 Mar 2022
23 Mar 2022
Historique:
received:
04
12
2021
accepted:
28
02
2022
revised:
27
02
2022
entrez:
24
3
2022
pubmed:
25
3
2022
medline:
26
3
2022
Statut:
epublish
Résumé
The aim of this research was to test the hypothesis that changes in the intestinal microbiota lead to the alternation of histidine metabolism and Th17/Treg cell imbalance in obstructive sleep apnea (OSA) patients. In total, 46 subjects were enrolled in the study, with 32 subjects in the OSA group and 14 in the healthy group, according to polysomnography examinations. Basic clinical characteristics were collected for this analysis. Feces were collected from OSA patients to detect the gut microbiota using 16S rRNA sequencing. Peripheral blood was obtained to detect the Th17/Treg cell ratio by flow cytometry. The present research demonstrated that at the phylum level, OSA patients have a disproportionate Firmicutes/Bacteroidetes ratio with increased Firmicutes and decreased Bacteroidetes in the gut microbiota compared to the healthy population. A Metastats analysis also indicated that the family Rikenellaceae was prevalent in the control group but not the OSA group. In addition, the abundance of Clostridium_XlVa was reduced and the abundance of Alistipes was elevated in healthy subjects at the genus level. Furthermore, a Phylogenetic Investigation of Communities by Reconstruction of Unobserved States analysis identified the alternation of metabolic pathways in OSA patients. The current study also identified an imbalance of Th17/Treg cells in OSA patients, with OSA patients having an elevated number of Treg cells compared to the control group. We determined that the abundance of Rikenellaceae and Alistipes increased and Clostridium_XlVa decreased in patients with OSA, which may have caused an imbalance in the proportion of Th17/Treg cells.
Identifiants
pubmed: 35322301
doi: 10.1007/s00203-022-02825-w
pii: 10.1007/s00203-022-02825-w
doi:
Substances chimiques
RNA, Ribosomal, 16S
0
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
217Subventions
Organisme : Natural Science Foundation of Zhejiang Province
ID : LY18H290008
Organisme : Natural Science Foundation of China
ID : 81973590
Organisme : the Medical and Health Science and Technology Plan of Zhejiang Province
ID : 2019309530
Commentaires et corrections
Type : ErratumIn
Informations de copyright
© 2022. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.
Références
Anderson ME Jr, Buchwald ZS, Ko J, Aurora R, Sanford T (2014) Patients with pediatric obstructive sleep apnea show altered T-cell populations with a dominant TH17 profile. Otolaryngol Head Neck Surg 150:880–886. https://doi.org/10.1177/0194599814521780
doi: 10.1177/0194599814521780
pubmed: 24486778
Badran M, Ayas N, Laher I (2014) Insights into obstructive sleep apnea research. Sleep Med 15:485–495. https://doi.org/10.1016/j.sleep.2014.01.009
doi: 10.1016/j.sleep.2014.01.009
pubmed: 24824769
Berry RB et al (2012) Rule for Scoring Respiratory events in sleep: update of the 2007 AASM Manual for the Scoring of Sleep and Associated Events. Deliberations of the Sleep Apnea Definitions Task Force of the American Academy of Sleep Medicine. J Clin Sleep Med 8:597–619. https://doi.org/10.5664/jcsm.2172
doi: 10.5664/jcsm.2172
pubmed: 23066376
pmcid: 3459210
Durgan DJ et al (2016) Role of the gut microbiome in obstructive sleep apnea-induced hypertension. Hypertension 67:469–474. https://doi.org/10.1161/HYPERTENSIONAHA.115.06672
doi: 10.1161/HYPERTENSIONAHA.115.06672
pubmed: 26711739
Furusawa Y et al (2013) Commensal microbe-derived butyrate induces the differentiation of colonic regulatory T cells. Nature 504:446–450. https://doi.org/10.1038/nature12721
doi: 10.1038/nature12721
pubmed: 24226770
Ganesh BP et al (2018) Prebiotics, probiotics, and acetate supplementation prevent hypertension in a model of obstructive sleep apnea. Hypertension 72:1141–1150. https://doi.org/10.1161/HYPERTENSIONAHA.118.11695
doi: 10.1161/HYPERTENSIONAHA.118.11695
pubmed: 30354816
Jialing L et al (2020) Changes in serum inflammatory cytokine levels and intestinal microbiota in a self-healing dextran sodium sulfate-induced ulcerative colitis murine model. Life Sci 263:118587. https://doi.org/10.1016/j.lfs.2020.118587
doi: 10.1016/j.lfs.2020.118587
pubmed: 33065145
Ko CY et al (2019) Gut microbiota in obstructive sleep apnea-hypopnea syndrome: disease-related dysbiosis and metabolic comorbidities. Clin Sci (lond) 133:905–917. https://doi.org/10.1042/CS20180891
doi: 10.1042/CS20180891
Li Z et al (2016) Efficacy of nasal continuous positive airway pressure on patients with OSA with erectile dysfunction and low sex hormone levels. Respir Med 119:130–134. https://doi.org/10.1016/j.rmed.2016.09.0019
doi: 10.1016/j.rmed.2016.09.0019
pubmed: 27692134
Lucking EF et al (2018) Chronic intermittent hypoxia disrupts cardiorespiratory homeostasis and gut microbiota composition in adult male guinea-pigs. EBioMedicine 38:191–205. https://doi.org/10.1016/j.ebiom.2018.11.010
doi: 10.1016/j.ebiom.2018.11.010
pubmed: 30446434
pmcid: 6306383
Mashaqi S, Gozal D (2019) Obstructive sleep apnea and systemic hypertension: gut dysbiosis as the mediator? J Clin Sleep Med 15:1517–1527. https://doi.org/10.5664/jcsm.7990
doi: 10.5664/jcsm.7990
pubmed: 31596218
pmcid: 6778338
Matsushita M et al (2021) Gut microbiota-derived short-chain fatty acids promote prostate cancer growth via IGF1 signaling. Cancer Res 81:4014–4026. https://doi.org/10.1158/0008-5472.CAN-20-4090
doi: 10.1158/0008-5472.CAN-20-4090
pubmed: 34039634
Moreno-Indias I et al (2015) Intermittent hypoxia alters gut microbiota diversity in a mouse model of sleep apnoea. Eur Respir J 45:1055–1065. https://doi.org/10.1183/09031936.00184314
doi: 10.1183/09031936.00184314
pubmed: 25537565
Moreno-Indias I et al (2016) Normoxic recovery mimicking treatment of sleep apnea does not reverse intermittent hypoxia-induced bacterial dysbiosis and low-grade endotoxemia in mice. Sleep 39:1891–1897. https://doi.org/10.5665/sleep.6176
doi: 10.5665/sleep.6176
pubmed: 27397563
pmcid: 5020371
Ni K, Zhao L, Wu J, Chen W, HongyaYang LX (2015) Th17/Treg balance in children with obstructive sleep apnea syndrome and the relationship with allergic rhinitis. Int J Pediatr Otorhinolaryngol 79:1448–1454. https://doi.org/10.1016/j.ijporl.2015.06.026
doi: 10.1016/j.ijporl.2015.06.026
pubmed: 26166452
Peppard PE, Young T, Barnet JH, Palta M, Hagen EW, Hla KM (2013) Increased prevalence of sleep-disordered breathing in adults. Am J Epidemiol 177:1006–1014. https://doi.org/10.1093/aje/kws342
doi: 10.1093/aje/kws342
pubmed: 23589584
pmcid: 3639722
Shen J et al (2020) The chemopreventive effects of Huangqin-tea against AOM-induced preneoplastic colonic aberrant crypt foci in rats and omics analysis. Food Funct 11:9634–9650. https://doi.org/10.1039/d0fo01731k
doi: 10.1039/d0fo01731k
pubmed: 33048099
Smith PM et al (2013) The microbial metabolites, short-chain fatty acids, regulate colonic Treg cell homeostasis. Science 341:569–573. https://doi.org/10.1126/science.1241165
doi: 10.1126/science.1241165
pubmed: 23828891
Ye JY et al (2012) The treg/th17 imbalance in patients with obstructive sleep apnoea syndrome. Mediators Inflamm 2012:815308. https://doi.org/10.1155/2012/815308
doi: 10.1155/2012/815308
pubmed: 23345934
pmcid: 3549368
Ye J et al (2015) CD4(+)T-lymphocyte subsets in nonobese children with obstructive sleep apnea syndrome. Pediatr Res 78:165–173. https://doi.org/10.1038/pr.2015.76
doi: 10.1038/pr.2015.76
pubmed: 25860501
Zhang H, Hui D, Li Y, Xiong G, Fu X (2019) Canmei formula reduces colitis-associated colorectal carcinogenesis in mice by modulating the composition of gut microbiota. Front Oncol 9:1149. https://doi.org/10.3389/fonc.2019.01149.eCollection2019
doi: 10.3389/fonc.2019.01149.eCollection2019
pubmed: 31803606
pmcid: 6877713
Zimmermann P, Messina N, Mohn WW, Finlay BB, Curtis N (2019) Association between the intestinal microbiota and allergic sensitization, eczema, and asthma: a systematic review. J Allergy Clin Immunol 143:467–485. https://doi.org/10.1016/j.jaci.2018.09.025 (Epub 2018 Dec 29 PMID: 30600099)
doi: 10.1016/j.jaci.2018.09.025
pubmed: 30600099