Electrolyte-Gated Organic Field-Effect Transistors for Quantitative Monitoring of the Molecular Dynamics of Crystallization at the Solid-Liquid Interface.
Electrolyte-gated organic field-effect transistor
crystallization
electrical double layer
molecular dynamics
solid−liquid interface
Journal
Nano letters
ISSN: 1530-6992
Titre abrégé: Nano Lett
Pays: United States
ID NLM: 101088070
Informations de publication
Date de publication:
13 04 2022
13 04 2022
Historique:
pubmed:
25
3
2022
medline:
15
4
2022
entrez:
24
3
2022
Statut:
ppublish
Résumé
Quantitative measurements of molecular dynamics at the solid-liquid interface are of crucial importance in a wide range of fields, such as heterogeneous catalysis, energy storage, nanofluidics, biosensing, and crystallization. In particular, the molecular dynamics associated with nucleation and crystal growth is very challenging to study because of the poor sensitivity or limited spatial/temporal resolution of the most widely used analytical techniques. We demonstrate that electrolyte-gated organic field-effect transistors (EGOFETs) are able to monitor in real-time the crystallization process in an evaporating droplet. The high sensitivity of these devices at the solid-liquid interface, through the electrical double layer and signal amplification, enables the quantification of changes in solute concentration over time and the transport rate of molecules at the solid-liquid interface during crystallization. Our results show that EGOFETs offer a highly sensitive and powerful, yet simple approach to investigate the molecular dynamics of compounds crystallizing from water.
Identifiants
pubmed: 35324207
doi: 10.1021/acs.nanolett.1c04424
pmc: PMC9098175
doi:
Substances chimiques
Electrolytes
0
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
2643-2649Références
Chem Soc Rev. 2019 Apr 1;48(7):2011-2038
pubmed: 30604792
ACS Nano. 2020 Aug 25;14(8):10394-10401
pubmed: 32692539
Nature. 2005 Dec 8;438(7069):746-7
pubmed: 16340997
Biosens Bioelectron. 2020 Nov 1;167:112433
pubmed: 32771862
Angew Chem Int Ed Engl. 2011 Feb 25;50(9):2014-34
pubmed: 21328510
J Am Chem Soc. 2007 Feb 7;129(5):1287-92
pubmed: 17263412
Nat Commun. 2018 Aug 13;9(1):3223
pubmed: 30104563
Nat Commun. 2020 Sep 18;11(1):4731
pubmed: 32948763
J Am Chem Soc. 2005 Nov 2;127(43):14982-3
pubmed: 16248610
Science. 2015 Jul 31;349(6247):aaa6760
pubmed: 26228157
Nature. 2017 Oct 25;550(7677):466-467
pubmed: 29072276
Nat Mater. 2004 Mar;3(3):171-6
pubmed: 14991019
J Am Chem Soc. 2013 Jul 10;135(27):9952-67
pubmed: 23750552
Nat Nanotechnol. 2017 May;12(4):343-350
pubmed: 28135260
Adv Mater. 2013 Apr 4;25(13):1822-46
pubmed: 23203564
Acc Chem Res. 2009 May 19;42(5):621-9
pubmed: 19402623
Science. 2018 Oct 19;362(6412):319-324
pubmed: 30190311
Nat Rev Methods Primers. 2021;1:
pubmed: 35475166
Phys Rev Lett. 2016 Mar 25;116(12):124501
pubmed: 27058080
Nat Commun. 2017 May 30;8:15642
pubmed: 28555621
J Am Chem Soc. 2009 Dec 30;131(51):18212-3
pubmed: 19958030
Nature. 2018 Apr 4;556(7699):89-94
pubmed: 29620730
Adv Healthc Mater. 2018 Feb;7(3):
pubmed: 28961377
Chem Rev. 2016 Jun 22;116(12):7078-116
pubmed: 27228560
Nanoscale Horiz. 2021 Jun 1;6(6):468-473
pubmed: 33908438
Chem Rev. 2018 Apr 11;118(7):3681-3721
pubmed: 29514005
Biosens Bioelectron. 2021 Jun 15;182:113144
pubmed: 33799026
Sci Adv. 2019 Apr 05;5(4):eaav7399
pubmed: 30972366
Nat Commun. 2021 May 27;12(1):3194
pubmed: 34045455