Unenhanced Cardiac Magnetic Resonance may improve detection and prognostication of an occult heart involvement in asymptomatic patients with systemic sclerosis.
Journal
Scientific reports
ISSN: 2045-2322
Titre abrégé: Sci Rep
Pays: England
ID NLM: 101563288
Informations de publication
Date de publication:
24 03 2022
24 03 2022
Historique:
received:
18
09
2021
accepted:
11
03
2022
entrez:
25
3
2022
pubmed:
26
3
2022
medline:
5
4
2022
Statut:
epublish
Résumé
Systemic sclerosis (SSc) is an uncommon autoimmune disease. Aim of the study was to detect the occult cardiac involvement in asymptomatic SSc patients of recent onset (indicative of a more aggressive disease) with unenhanced Cardiac Magnetic Resonance (CMR). Our historical prospective study included naïve SSc patients of recent onset. Modified Rodnan Skin Score (mRSS) and Scleroderma Clinical Trial Consortium Damage Index (SCTC-DI) were calculated. Cardiac volumes and global myocardial strain were assessed and also compared with healthy group values. Pericardial involvement was further recorded. Thirty-one patients met inclusion criteria (54 ± 12 years; 1 M). Mean duration of disease was 6.8 years. All patients showed preserved systolic function. Higher incidence of pericardial involvement was founded in patients with disease accrual damage (OR: 9.6, p-value 0.01). Radial and longitudinal strain values resulted significantly different between healthy and SSc patients. GRS and GLS showed an independent predictive validity on damage accrual (HR: 1.22 and 1.47, respectively). Best C-index for disease progression was reached when strain values and pericardial evaluation were added to conventional risk factors (0.97, p-value: 0.0001). Strain analysis by CMR-TT may show a high capability both in identifying early cardiac involvement and stratifying its clinical aggressiveness, regardless of the standard damage indices and CMR contrast-dependent biomarker.
Identifiants
pubmed: 35332224
doi: 10.1038/s41598-022-09064-5
pii: 10.1038/s41598-022-09064-5
pmc: PMC8948177
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
5125Informations de copyright
© 2022. The Author(s).
Références
Denton, C. P. & Khanna, D. Systemic sclerosis. Lancet 390(10103), 1685–1699 (2017).
pubmed: 28413064
doi: 10.1016/S0140-6736(17)30933-9
Poudel, D. R. & Derk, C. T. Mortality and survival in systemic sclerosis: A review of recent literature. Curr. Opin. Rheumatol. 30(6), 588–593 (2018).
pubmed: 30148801
doi: 10.1097/BOR.0000000000000551
Varga, J. & Hinchcliff, M. Systemic sclerosis: Beyond limited and diffuse subsets?. Nat. Rev. Rheumatol. 10(4), 200–202 (2014).
pubmed: 24535544
pmcid: 5438483
doi: 10.1038/nrrheum.2014.22
Jordan, S., Maurer, B., Toniolo, M., Michel, B. & Distler, O. Performance of the new ACR/EULAR classification criteria for systemic sclerosis in clinical practice. Rheumatol (United Kingdom) 54(8), 1454–1458 (2015).
Bellando-Randone, S. & Matucci-Cerinic, M. Very early systemic sclerosis. Best Pract. Res. Clin. Rheumatol. 33(4), 101428 (2019).
pubmed: 31810547
doi: 10.1016/j.berh.2019.101428
Furue, M. et al. Pathogenesis of systemic sclerosis—Current concept and emerging treatments. Immunol. Res. 65(4), 790–797 (2017).
pubmed: 28488090
doi: 10.1007/s12026-017-8926-y
Minier, T. et al. Preliminary analysis of the Very Early Diagnosis of Systemic Sclerosis (VEDOSS) EUSTAR multicentre study: Evidence for puffy fingers as a pivotal sign for suspicion of systemic sclerosis. Ann. Rheum. Dis. 73(12), 2087–2093 (2014).
pubmed: 23940211
doi: 10.1136/annrheumdis-2013-203716
Melissaropoulos, K. et al. Targeting very early systemic sclerosis: A case-based review. Rheumatol. Int. 39(11), 1961–1970 (2019).
pubmed: 31254002
doi: 10.1007/s00296-019-04357-x
Elhai, M. et al. Mapping and predicting mortality from systemic sclerosis. Ann. Rheum. Dis. 76(11), 1897–1905 (2017).
pubmed: 28835464
doi: 10.1136/annrheumdis-2017-211448
Steen, V. D. & Medsger, T. A. Changes in causes of death in systemic sclerosis, 1972–2002. Ann. Rheum. Dis. 66(7), 940–944 (2007).
pubmed: 17329309
pmcid: 1955114
doi: 10.1136/ard.2006.066068
Mavrogeni, S. I. et al. The perpetual sword of Damocles: Cardiac involvement in systemic sclerosis and the role of non-invasive imaging modalities in medical decision making. Eur. J. Rheumatol. 7(Suppl3), S203-211 (2020).
pubmed: 32697932
pmcid: 7647675
doi: 10.5152/eurjrheum.2020.19110
Di Cesare, E. et al. Early assessment of sub-clinical cardiac involvement in systemic sclerosis (SSc) using delayed enhancement cardiac magnetic resonance (CE-MRI). Eur. J. Radiol. 82(6), e268–e273 (2013).
pubmed: 23510727
doi: 10.1016/j.ejrad.2013.02.014
Giacomelli, R. et al. Pharmacological stress, rest perfusion and delayed enhancement cardiac magnetic resonance identifies very early cardiac involvement in systemic sclerosis patients of recent onset. Int. J. Rheum. Dis. 20(9), 1247–1260 (2017).
pubmed: 28580766
doi: 10.1111/1756-185X.13107
Van Den Hoogen, F. et al. 2013 classification criteria for systemic sclerosis: An American college of rheumatology/European league against rheumatism collaborative initiative. Ann. Rheum. Dis. 72(11), 1747–1755 (2013).
pubmed: 24092682
doi: 10.1136/annrheumdis-2013-204424
LeRoy, E. C. et al. Scleroderma (systemic sclerosis): Classification, subsets and pathogenesis. J. Rheumatol. 15(2), 202–205 (1988).
pubmed: 3361530
Russo, V., Lovato, L. & Ligabue, G. Cardiac MRI: Technical basis. Radiol. Med. 125(11), 1040–1055 (2020).
pubmed: 32939626
doi: 10.1007/s11547-020-01282-z
Bogaert, J. & Francone, M. Pericardial disease: Value of CT and MR Imaging. Radiology 267(2), 340–356 (2013).
pubmed: 23610095
doi: 10.1148/radiol.13121059
Ferdowsi, N. et al. Development and validation of the Scleroderma Clinical Trials Consortium Damage Index (SCTC-DI): A novel instrument to quantify organ damage in systemic sclerosis. Ann. Rheum. Dis. 78(6), 807–816 (2019).
pubmed: 30928903
doi: 10.1136/annrheumdis-2018-214764
Kaldas, M. et al. Sensitivity to change of the modified Rodnan skin score in diffuse systemic sclerosis-assessment of individual body sites in two large randomized controlled trials. Rheumatology 48(9), 1143–1146 (2009).
pubmed: 19605370
pmcid: 2734267
doi: 10.1093/rheumatology/kep202
Kawel-Boehm, N. et al. Reference ranges (“normal values”) for cardiovascular magnetic resonance (CMR) in adults and children. J. Cardiovasc. Magn. Reson. 22, 1–63 (2020).
doi: 10.1186/s12968-020-00683-3
Hung, G. et al. Progress in understanding, diagnosing, and managing cardiac complications of systemic sclerosis. Curr. Rheumatol. Rep. 21(68), 1–16 (2019).
Pontone, G. et al. Appropriate use criteria for cardiovascular magnetic resonance imaging (CMR): SIC—SIRM position paper part 1 (ischemic and congenital heart diseases, cardio-oncology, cardiac masses and heart transplant). Radiol. Med. 126(3), 365–379 (2021).
pubmed: 33629237
pmcid: 7937599
doi: 10.1007/s11547-020-01332-6
Galea, N. et al. Cardiovascular magnetic resonance (CMR) in restrictive cardiomyopathies. Radiol. Med. 125(11), 1072–1086 (2020).
pubmed: 32970272
pmcid: 7593297
doi: 10.1007/s11547-020-01287-8
Pradella, S. et al. Cardiac magnetic resonance in hypertrophic and dilated cardiomyopathies. Radiol. Med. 125(11), 1056–1071 (2020).
pubmed: 32946001
doi: 10.1007/s11547-020-01276-x
Palumbo, P. et al. Cardiac magnetic resonance in arrhythmogenic cardiomyopathies. Radiol. Med. 125(11), 1087–1101 (2020).
pubmed: 32978708
doi: 10.1007/s11547-020-01289-6
Palumbo, P. et al. Left ventricular global myocardial strain assessment: Are CMR feature-tracking algorithms useful in the clinical setting?. Radiol. Med. 125(5), 444–450 (2020).
doi: 10.1007/s11547-020-01159-1
Jia, F. W. et al. Usefulness of myocardial strain and twist for early detection of myocardial dysfunction in patients with autoimmune diseases. Am. J. Cardiol. 125(3), 475–481 (2020).
pubmed: 31784053
doi: 10.1016/j.amjcard.2019.10.035
Guerra, F. et al. Global longitudinal strain measured by speckle tracking identifies subclinical heart involvement in patients with systemic sclerosis. Eur. J. Prev. Cardiol. 25(15), 1598–1606 (2018).
pubmed: 29966435
doi: 10.1177/2047487318786315
Bratis, K. et al. CMR feature tracking in cardiac asymptomatic systemic sclerosis: Clinical implications. PLoS ONE 14(8), 1–13 (2019).
doi: 10.1371/journal.pone.0221021
Di Cesare, E. et al. Multimodality imaging in chronic heart failure. Radiol. Med. 126(2), 231–242 (2021).
pubmed: 32676875
doi: 10.1007/s11547-020-01245-4
Geyer, H. et al. Assessment of myocardial mechanics using speckle tracking echocardiography: Fundamentals and clinical applications. J. Am. Soc. Echocardiogr. 23(4), 351–369 (2010).
pubmed: 20362924
doi: 10.1016/j.echo.2010.02.015
Buffa, V. & Di Renzi, P. CMR in the diagnosis of ischemic heart disease. Radiol. Med. 125(11), 1114–1123 (2020).
pubmed: 32936388
doi: 10.1007/s11547-020-01278-9
Mizuguchi, Y. et al. The Functional role of longitudinal, circumferential, and radial myocardial deformation for regulating the early impairment of left ventricular contraction and relaxation in patients with cardiovascular risk factors: A study with two-dimensional strain imaging. J. Am. Soc. Echocardiogr. 21(10), 1138–1144 (2008).
pubmed: 18926389
doi: 10.1016/j.echo.2008.07.016
Holmes, A. A. et al. Circumferential strain acquired by CMR early after acute myocardial infarction adds incremental predictive value to late gadolinium enhancement imaging to predict late myocardial remodeling and subsequent risk of sudden cardiac death. J. Interv. Card. Electrophysiol. 50(3), 211–218 (2017).
pubmed: 29143170
doi: 10.1007/s10840-017-0296-9
Palumbo, P. et al. Real-world clinical validity of cardiac magnetic resonance tissue tracking in primitive hypertrophic cardiomyopathy. Radiol. Med. 126, 1532–1543 (2021).
pubmed: 34894317
doi: 10.1007/s11547-021-01432-x
Li, X. et al. Survival rate, causes of death, and risk factors in systemic sclerosis: A large cohort study. Clin. Rheumatol. 37(11), 3051–3056 (2018).
pubmed: 30225558
doi: 10.1007/s10067-018-4291-z
Fernández-Codina, A. et al. Cardiac involvement in systemic sclerosis: Differences between clinical subsets and influence on survival. Rheumatol. Int. 37(1), 75–84 (2017).
pubmed: 26497313
doi: 10.1007/s00296-015-3382-2
Liguori, C. et al. Myocarditis: imaging up to date. Radiol. Med. 125, 1124–1134 (2020).
pubmed: 33025305
pmcid: 7538190
doi: 10.1007/s11547-020-01279-8
Byers, R. J., Marshall, D. A. S. & Freemont, A. J. Pericardial involvement in systemic sclerosis. Ann. Rheum. Dis. 56(6), 393–394 (1997).
pubmed: 9227172
pmcid: 1752384
doi: 10.1136/ard.56.6.393
Woodworth, T. G., Suliman, Y. A., Furst, D. E. & Clements, P. Scleroderma renal crisis and renal involvement in systemic sclerosis. Nat. Rev. Nephrol. 12(11), 678–691 (2016).
pubmed: 27641135
doi: 10.1038/nrneph.2016.124
Chrabaszcz, M. et al. Renal involvement in systemic sclerosis: an update. Kidney Blood Press Res. 45(4), 532–548 (2020).
pubmed: 32521536
doi: 10.1159/000507886