Unenhanced Cardiac Magnetic Resonance may improve detection and prognostication of an occult heart involvement in asymptomatic patients with systemic sclerosis.


Journal

Scientific reports
ISSN: 2045-2322
Titre abrégé: Sci Rep
Pays: England
ID NLM: 101563288

Informations de publication

Date de publication:
24 03 2022
Historique:
received: 18 09 2021
accepted: 11 03 2022
entrez: 25 3 2022
pubmed: 26 3 2022
medline: 5 4 2022
Statut: epublish

Résumé

Systemic sclerosis (SSc) is an uncommon autoimmune disease. Aim of the study was to detect the occult cardiac involvement in asymptomatic SSc patients of recent onset (indicative of a more aggressive disease) with unenhanced Cardiac Magnetic Resonance (CMR). Our historical prospective study included naïve SSc patients of recent onset. Modified Rodnan Skin Score (mRSS) and Scleroderma Clinical Trial Consortium Damage Index (SCTC-DI) were calculated. Cardiac volumes and global myocardial strain were assessed and also compared with healthy group values. Pericardial involvement was further recorded. Thirty-one patients met inclusion criteria (54 ± 12 years; 1 M). Mean duration of disease was 6.8 years. All patients showed preserved systolic function. Higher incidence of pericardial involvement was founded in patients with disease accrual damage (OR: 9.6, p-value 0.01). Radial and longitudinal strain values resulted significantly different between healthy and SSc patients. GRS and GLS showed an independent predictive validity on damage accrual (HR: 1.22 and 1.47, respectively). Best C-index for disease progression was reached when strain values and pericardial evaluation were added to conventional risk factors (0.97, p-value: 0.0001). Strain analysis by CMR-TT may show a high capability both in identifying early cardiac involvement and stratifying its clinical aggressiveness, regardless of the standard damage indices and CMR contrast-dependent biomarker.

Identifiants

pubmed: 35332224
doi: 10.1038/s41598-022-09064-5
pii: 10.1038/s41598-022-09064-5
pmc: PMC8948177
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

5125

Informations de copyright

© 2022. The Author(s).

Références

Denton, C. P. & Khanna, D. Systemic sclerosis. Lancet 390(10103), 1685–1699 (2017).
pubmed: 28413064 doi: 10.1016/S0140-6736(17)30933-9
Poudel, D. R. & Derk, C. T. Mortality and survival in systemic sclerosis: A review of recent literature. Curr. Opin. Rheumatol. 30(6), 588–593 (2018).
pubmed: 30148801 doi: 10.1097/BOR.0000000000000551
Varga, J. & Hinchcliff, M. Systemic sclerosis: Beyond limited and diffuse subsets?. Nat. Rev. Rheumatol. 10(4), 200–202 (2014).
pubmed: 24535544 pmcid: 5438483 doi: 10.1038/nrrheum.2014.22
Jordan, S., Maurer, B., Toniolo, M., Michel, B. & Distler, O. Performance of the new ACR/EULAR classification criteria for systemic sclerosis in clinical practice. Rheumatol (United Kingdom) 54(8), 1454–1458 (2015).
Bellando-Randone, S. & Matucci-Cerinic, M. Very early systemic sclerosis. Best Pract. Res. Clin. Rheumatol. 33(4), 101428 (2019).
pubmed: 31810547 doi: 10.1016/j.berh.2019.101428
Furue, M. et al. Pathogenesis of systemic sclerosis—Current concept and emerging treatments. Immunol. Res. 65(4), 790–797 (2017).
pubmed: 28488090 doi: 10.1007/s12026-017-8926-y
Minier, T. et al. Preliminary analysis of the Very Early Diagnosis of Systemic Sclerosis (VEDOSS) EUSTAR multicentre study: Evidence for puffy fingers as a pivotal sign for suspicion of systemic sclerosis. Ann. Rheum. Dis. 73(12), 2087–2093 (2014).
pubmed: 23940211 doi: 10.1136/annrheumdis-2013-203716
Melissaropoulos, K. et al. Targeting very early systemic sclerosis: A case-based review. Rheumatol. Int. 39(11), 1961–1970 (2019).
pubmed: 31254002 doi: 10.1007/s00296-019-04357-x
Elhai, M. et al. Mapping and predicting mortality from systemic sclerosis. Ann. Rheum. Dis. 76(11), 1897–1905 (2017).
pubmed: 28835464 doi: 10.1136/annrheumdis-2017-211448
Steen, V. D. & Medsger, T. A. Changes in causes of death in systemic sclerosis, 1972–2002. Ann. Rheum. Dis. 66(7), 940–944 (2007).
pubmed: 17329309 pmcid: 1955114 doi: 10.1136/ard.2006.066068
Mavrogeni, S. I. et al. The perpetual sword of Damocles: Cardiac involvement in systemic sclerosis and the role of non-invasive imaging modalities in medical decision making. Eur. J. Rheumatol. 7(Suppl3), S203-211 (2020).
pubmed: 32697932 pmcid: 7647675 doi: 10.5152/eurjrheum.2020.19110
Di Cesare, E. et al. Early assessment of sub-clinical cardiac involvement in systemic sclerosis (SSc) using delayed enhancement cardiac magnetic resonance (CE-MRI). Eur. J. Radiol. 82(6), e268–e273 (2013).
pubmed: 23510727 doi: 10.1016/j.ejrad.2013.02.014
Giacomelli, R. et al. Pharmacological stress, rest perfusion and delayed enhancement cardiac magnetic resonance identifies very early cardiac involvement in systemic sclerosis patients of recent onset. Int. J. Rheum. Dis. 20(9), 1247–1260 (2017).
pubmed: 28580766 doi: 10.1111/1756-185X.13107
Van Den Hoogen, F. et al. 2013 classification criteria for systemic sclerosis: An American college of rheumatology/European league against rheumatism collaborative initiative. Ann. Rheum. Dis. 72(11), 1747–1755 (2013).
pubmed: 24092682 doi: 10.1136/annrheumdis-2013-204424
LeRoy, E. C. et al. Scleroderma (systemic sclerosis): Classification, subsets and pathogenesis. J. Rheumatol. 15(2), 202–205 (1988).
pubmed: 3361530
Russo, V., Lovato, L. & Ligabue, G. Cardiac MRI: Technical basis. Radiol. Med. 125(11), 1040–1055 (2020).
pubmed: 32939626 doi: 10.1007/s11547-020-01282-z
Bogaert, J. & Francone, M. Pericardial disease: Value of CT and MR Imaging. Radiology 267(2), 340–356 (2013).
pubmed: 23610095 doi: 10.1148/radiol.13121059
Ferdowsi, N. et al. Development and validation of the Scleroderma Clinical Trials Consortium Damage Index (SCTC-DI): A novel instrument to quantify organ damage in systemic sclerosis. Ann. Rheum. Dis. 78(6), 807–816 (2019).
pubmed: 30928903 doi: 10.1136/annrheumdis-2018-214764
Kaldas, M. et al. Sensitivity to change of the modified Rodnan skin score in diffuse systemic sclerosis-assessment of individual body sites in two large randomized controlled trials. Rheumatology 48(9), 1143–1146 (2009).
pubmed: 19605370 pmcid: 2734267 doi: 10.1093/rheumatology/kep202
Kawel-Boehm, N. et al. Reference ranges (“normal values”) for cardiovascular magnetic resonance (CMR) in adults and children. J. Cardiovasc. Magn. Reson. 22, 1–63 (2020).
doi: 10.1186/s12968-020-00683-3
Hung, G. et al. Progress in understanding, diagnosing, and managing cardiac complications of systemic sclerosis. Curr. Rheumatol. Rep. 21(68), 1–16 (2019).
Pontone, G. et al. Appropriate use criteria for cardiovascular magnetic resonance imaging (CMR): SIC—SIRM position paper part 1 (ischemic and congenital heart diseases, cardio-oncology, cardiac masses and heart transplant). Radiol. Med. 126(3), 365–379 (2021).
pubmed: 33629237 pmcid: 7937599 doi: 10.1007/s11547-020-01332-6
Galea, N. et al. Cardiovascular magnetic resonance (CMR) in restrictive cardiomyopathies. Radiol. Med. 125(11), 1072–1086 (2020).
pubmed: 32970272 pmcid: 7593297 doi: 10.1007/s11547-020-01287-8
Pradella, S. et al. Cardiac magnetic resonance in hypertrophic and dilated cardiomyopathies. Radiol. Med. 125(11), 1056–1071 (2020).
pubmed: 32946001 doi: 10.1007/s11547-020-01276-x
Palumbo, P. et al. Cardiac magnetic resonance in arrhythmogenic cardiomyopathies. Radiol. Med. 125(11), 1087–1101 (2020).
pubmed: 32978708 doi: 10.1007/s11547-020-01289-6
Palumbo, P. et al. Left ventricular global myocardial strain assessment: Are CMR feature-tracking algorithms useful in the clinical setting?. Radiol. Med. 125(5), 444–450 (2020).
doi: 10.1007/s11547-020-01159-1
Jia, F. W. et al. Usefulness of myocardial strain and twist for early detection of myocardial dysfunction in patients with autoimmune diseases. Am. J. Cardiol. 125(3), 475–481 (2020).
pubmed: 31784053 doi: 10.1016/j.amjcard.2019.10.035
Guerra, F. et al. Global longitudinal strain measured by speckle tracking identifies subclinical heart involvement in patients with systemic sclerosis. Eur. J. Prev. Cardiol. 25(15), 1598–1606 (2018).
pubmed: 29966435 doi: 10.1177/2047487318786315
Bratis, K. et al. CMR feature tracking in cardiac asymptomatic systemic sclerosis: Clinical implications. PLoS ONE 14(8), 1–13 (2019).
doi: 10.1371/journal.pone.0221021
Di Cesare, E. et al. Multimodality imaging in chronic heart failure. Radiol. Med. 126(2), 231–242 (2021).
pubmed: 32676875 doi: 10.1007/s11547-020-01245-4
Geyer, H. et al. Assessment of myocardial mechanics using speckle tracking echocardiography: Fundamentals and clinical applications. J. Am. Soc. Echocardiogr. 23(4), 351–369 (2010).
pubmed: 20362924 doi: 10.1016/j.echo.2010.02.015
Buffa, V. & Di Renzi, P. CMR in the diagnosis of ischemic heart disease. Radiol. Med. 125(11), 1114–1123 (2020).
pubmed: 32936388 doi: 10.1007/s11547-020-01278-9
Mizuguchi, Y. et al. The Functional role of longitudinal, circumferential, and radial myocardial deformation for regulating the early impairment of left ventricular contraction and relaxation in patients with cardiovascular risk factors: A study with two-dimensional strain imaging. J. Am. Soc. Echocardiogr. 21(10), 1138–1144 (2008).
pubmed: 18926389 doi: 10.1016/j.echo.2008.07.016
Holmes, A. A. et al. Circumferential strain acquired by CMR early after acute myocardial infarction adds incremental predictive value to late gadolinium enhancement imaging to predict late myocardial remodeling and subsequent risk of sudden cardiac death. J. Interv. Card. Electrophysiol. 50(3), 211–218 (2017).
pubmed: 29143170 doi: 10.1007/s10840-017-0296-9
Palumbo, P. et al. Real-world clinical validity of cardiac magnetic resonance tissue tracking in primitive hypertrophic cardiomyopathy. Radiol. Med. 126, 1532–1543 (2021).
pubmed: 34894317 doi: 10.1007/s11547-021-01432-x
Li, X. et al. Survival rate, causes of death, and risk factors in systemic sclerosis: A large cohort study. Clin. Rheumatol. 37(11), 3051–3056 (2018).
pubmed: 30225558 doi: 10.1007/s10067-018-4291-z
Fernández-Codina, A. et al. Cardiac involvement in systemic sclerosis: Differences between clinical subsets and influence on survival. Rheumatol. Int. 37(1), 75–84 (2017).
pubmed: 26497313 doi: 10.1007/s00296-015-3382-2
Liguori, C. et al. Myocarditis: imaging up to date. Radiol. Med. 125, 1124–1134 (2020).
pubmed: 33025305 pmcid: 7538190 doi: 10.1007/s11547-020-01279-8
Byers, R. J., Marshall, D. A. S. & Freemont, A. J. Pericardial involvement in systemic sclerosis. Ann. Rheum. Dis. 56(6), 393–394 (1997).
pubmed: 9227172 pmcid: 1752384 doi: 10.1136/ard.56.6.393
Woodworth, T. G., Suliman, Y. A., Furst, D. E. & Clements, P. Scleroderma renal crisis and renal involvement in systemic sclerosis. Nat. Rev. Nephrol. 12(11), 678–691 (2016).
pubmed: 27641135 doi: 10.1038/nrneph.2016.124
Chrabaszcz, M. et al. Renal involvement in systemic sclerosis: an update. Kidney Blood Press Res. 45(4), 532–548 (2020).
pubmed: 32521536 doi: 10.1159/000507886

Auteurs

Pierpaolo Palumbo (P)

Department of Diagnostic Imaging, Area of Cardiovascular and Interventional Imaging, Abruzzo Health Unit 1, Via Saragat -località Campo di Pile, 67100, L'Aquila, Italy. palumbopierpaolo89@gmail.com.
SIRM Foundation, Italian Society of Medical and Interventional Radiology (SIRM), 20122, Milan, Italy. palumbopierpaolo89@gmail.com.

Piero Ruscitti (P)

Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, Via Vetoio 1, 67100, L'Aquila, Italy.

Ester Cannizzaro (E)

Department of Diagnostic Imaging, Area of Cardiovascular and Interventional Imaging, Abruzzo Health Unit 1, Via Saragat -località Campo di Pile, 67100, L'Aquila, Italy.

Onorina Berardicurti (O)

Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, Via Vetoio 1, 67100, L'Aquila, Italy.

Alessandro Conforti (A)

Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, Via Vetoio 1, 67100, L'Aquila, Italy.

Annamaria Di Cesare (A)

Ospedale "Infermi" di Rimini, Viale Luigi Settembrini, 2, 47923, Rimini, Italy.

Ilenia Di Cola (I)

Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, Via Vetoio 1, 67100, L'Aquila, Italy.

Roberto Giacomelli (R)

Rome Biomedical Campus University, via Álvaro del Portillo 200, 00128, Roma, Italy.

Alessandra Splendiani (A)

Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, Via Vetoio 1, 67100, L'Aquila, Italy.

Antonio Barile (A)

Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, Via Vetoio 1, 67100, L'Aquila, Italy.

Carlo Masciocchi (C)

Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, Via Vetoio 1, 67100, L'Aquila, Italy.

Paola Cipriani (P)

Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, Via Vetoio 1, 67100, L'Aquila, Italy.

Ernesto Di Cesare (E)

Department of Life, Health and Environmental Sciences, University of L'Aquila, Piazzale Salvatore Tommasi 1, 67100, L'Aquila, Italy.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH