BH3 mimetic drugs cooperate with Temozolomide, JQ1 and inducers of ferroptosis in killing glioblastoma multiforme cells.


Journal

Cell death and differentiation
ISSN: 1476-5403
Titre abrégé: Cell Death Differ
Pays: England
ID NLM: 9437445

Informations de publication

Date de publication:
07 2022
Historique:
received: 23 07 2021
accepted: 04 03 2022
revised: 03 03 2022
pubmed: 26 3 2022
medline: 20 7 2022
entrez: 25 3 2022
Statut: ppublish

Résumé

Glioblastoma multiforme (GBM) is the most common and aggressive form of brain cancer, with treatment options often constrained due to inherent resistance of malignant cells to conventional therapy. We investigated the impact of triggering programmed cell death (PCD) by using BH3 mimetic drugs in human GBM cell lines. We demonstrate that co-targeting the pro-survival proteins BCL-XL and MCL-1 was more potent at killing six GBM cell lines compared to conventional therapy with Temozolomide or the bromodomain inhibitor JQ1 in vitro. Enhanced cell killing was observed in U251 and SNB-19 cells in response to dual treatment with TMZ or JQ1 combined with a BCL-XL inhibitor, compared to single agent treatment. This was reflected in abundant cleavage/activation of caspase-3 and cleavage of PARP1, markers of apoptosis. U251 and SNB-19 cells were more readily killed by a combination of BH3 mimetics targeting BCL-XL and MCL-1 as opposed to dual treatment with the BCL-2 inhibitor Venetoclax and a BCL-XL inhibitor. The combined loss of BAX and BAK, the essential executioners of intrinsic apoptosis, rendered U251 and SNB-19 cells refractory to any of the drug combinations tested, demonstrating that apoptosis is responsible for their killing. In an orthotopic mouse model of GBM, we demonstrate that the BCL-XL inhibitor A1331852 can penetrate the brain, with A1331852 detected in both tumour and healthy brain regions. We also investigated the impact of combining small molecule inducers of ferroptosis, erastin and RSL3, with BH3 mimetic drugs. We found that a BCL-XL or an MCL-1 inhibitor potently cooperates with inducers of ferroptosis in killing U251 cells. Overall, these findings demonstrate the potential of dual targeting of distinct PCD signalling pathways in GBM and may guide the utility of BCL-XL inhibitors and inducers of ferroptosis with standard of care treatment for improved therapies for GBM.

Identifiants

pubmed: 35332309
doi: 10.1038/s41418-022-00977-2
pii: 10.1038/s41418-022-00977-2
pmc: PMC9287558
doi:

Substances chimiques

Antineoplastic Agents 0
Myeloid Cell Leukemia Sequence 1 Protein 0
Proto-Oncogene Proteins c-bcl-2 0
bcl-X Protein 0
Temozolomide YF1K15M17Y

Types de publication

Journal Article Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

1335-1348

Informations de copyright

© 2022. The Author(s), under exclusive licence to ADMC Associazione Differenziamento e Morte Cellulare.

Références

Wolf KJ, Chen J, Coombes J, Aghi MK, Kumar S. Dissecting and rebuilding the glioblastoma microenvironment with engineered materials. Nat Rev Mater. 2019;4:651–68.
pubmed: 32647587 pmcid: 7347297 doi: 10.1038/s41578-019-0135-y
Sottoriva A, Spiteri I, Piccirillo SG, Touloumis A, Collins VP, Marioni JC, et al. Intratumor heterogeneity in human glioblastoma reflects cancer evolutionary dynamics. Proc Natl Acad Sci USA. 2013;110:4009–14.
pubmed: 23412337 pmcid: 3593922 doi: 10.1073/pnas.1219747110
Fisher JP, Adamson DC. Current FDA-approved therapies for high-grade malignant gliomas. Biomedicines. 2021;9:324–36.
pubmed: 33810154 pmcid: 8004675 doi: 10.3390/biomedicines9030324
Czabotar PE, Lessene G, Strasser A, Adams JM. Control of apoptosis by the BCL-2 protein family: implications for physiology and therapy. Nat Rev Mol Cell Biol. 2014;15:49–63.
pubmed: 24355989 doi: 10.1038/nrm3722
Moujalled D, Strasser A, Liddell JR. Molecular mechanisms of cell death in neurological diseases. Cell Death Differ. 2021;28:2029–44.
pubmed: 34099897 pmcid: 8257776 doi: 10.1038/s41418-021-00814-y
Puthalakath H, Strasser A. Keeping killers on a tight leash: transcriptional and post-translational control of the pro-apoptotic activity of BH3-only proteins. Cell Death Differ. 2002;9:505–12.
pubmed: 11973609 doi: 10.1038/sj.cdd.4400998
Kelly GL, Strasser A. Toward targeting antiapoptotic MCL-1 for cancer therapy. Annu Rev Cancer Biol. 2020;4:299–313.
doi: 10.1146/annurev-cancerbio-030419-033510
Singh R, Letai A, Sarosiek K. Regulation of apoptosis in health and disease: the balancing act of BCL-2 family proteins. Nat Rev Mol Cell Biol. 2019;20:175–93.
pubmed: 30655609 pmcid: 7325303 doi: 10.1038/s41580-018-0089-8
Cimini A, Ippoliti R. Innovative Therapies against human glioblastoma multiforme. ISRN Oncol. 2011;2011:787490.
pubmed: 22091432 pmcid: 3195804
Jiang Z, Zheng X, Rich KM. Down-regulation of Bcl-2 and Bcl-xL expression with bispecific antisense treatment in glioblastoma cell lines induce cell death. J Neurochem. 2003;84:273–81.
pubmed: 12558990 doi: 10.1046/j.1471-4159.2003.01522.x
Liwak U, Jordan LE, Von-Holt SD, Singh P, Hanson JE, Lorimer IA, et al. Loss of PDCD4 contributes to enhanced chemoresistance in Glioblastoma multiforme through de-repression of Bcl-xL translation. Oncotarget. 2013;4:1365–72.
pubmed: 23965755 pmcid: 3824522 doi: 10.18632/oncotarget.1154
Milani M, Beckett AJ, Al-Zebeeby A, Luo X, Prior IA, Cohen GM, et al. DRP-1 functions independently of mitochondrial structural perturbations to facilitate BH3 mimetic-mediated apoptosis. Cell Death Discov. 2019;5:117.
pubmed: 31341643 pmcid: 6637195 doi: 10.1038/s41420-019-0199-x
Kotschy A, Szlavik Z, Murray J, Davidson J, Maragno AL, Le Toumelin-Braizat G, et al. The MCL1 inhibitor S63845 is tolerable and effective in diverse cancer models. Nature. 2016;538:477–82.
pubmed: 27760111 doi: 10.1038/nature19830
Lessene G, Czabotar PE, Sleebs BE, Zobel K, Lowes KN, Adams JM, et al. Structure-guided design of a selective BCL-X(L) inhibitor. Nat Chem Biol. 2013;9:390–7.
pubmed: 23603658 doi: 10.1038/nchembio.1246
Souers AJ, Leverson JD, Boghaert ER, Ackler SL, Catron ND, Chen J, et al. ABT-199, a potent and selective BCL-2 inhibitor, achieves antitumor activity while sparing platelets. Nat Med. 2013;19:202–8.
pubmed: 23291630 doi: 10.1038/nm.3048
Lin VS, Xu ZF, Huang DCS, Thijssen R. BH3 mimetics for the treatment of B-cell malignancies-insights and lessons from the clinic. Cancers. 2020;12:3353–76.
pmcid: 7696913 doi: 10.3390/cancers12113353
Caenepeel S, Brown SP, Belmontes B, Moody G, Keegan KS, Chui D, et al. AMG 176, a selective MCL1 inhibitor, is effective in hematologic cancer models alone and in combination with established therapies. Cancer Discov. 2018;8:1582–97.
pubmed: 30254093 doi: 10.1158/2159-8290.CD-18-0387
Tron AE, Belmonte MA, Adam A, Aquila BM, Boise LH, Chiarparin E, et al. Discovery of Mcl-1-specific inhibitor AZD5991 and preclinical activity in multiple myeloma and acute myeloid leukemia. Nat Commun. 2018;9:5341.
pubmed: 30559424 pmcid: 6297231 doi: 10.1038/s41467-018-07551-w
Ramsey HE, Fischer MA, Lee T, Gorska AE, Arrate MP, Fuller L, et al. A novel MCL1 inhibitor combined with venetoclax rescues venetoclax-resistant acute myelogenous leukemia. Cancer Discov. 2018;8:1566–81.
pubmed: 30185627 pmcid: 6279595 doi: 10.1158/2159-8290.CD-18-0140
Opferman JT. Attacking cancer’s Achilles heel: antagonism of anti-apoptotic BCL-2 family members. FEBS J. 2016;283:2661–75.
pubmed: 26293580 doi: 10.1111/febs.13472
Lee EF, Harris TJ, Tran S, Evangelista M, Arulananda S, John T, et al. BCL-XL and MCL-1 are the key BCL-2 family proteins in melanoma cell survival. Cell Death Dis. 2019;10:342.
pubmed: 31019203 pmcid: 6482196 doi: 10.1038/s41419-019-1568-3
Abdul Rahman SF, Muniandy K, Soo YK, Tiew EYH, Tan KX, Bates TE, et al. Co-inhibition of BCL-XL and MCL-1 with selective BCL-2 family inhibitors enhances cytotoxicity of cervical cancer cell lines. Biochem Biophys Rep. 2020;22:100756.
pubmed: 32346617 pmcid: 7183162
Grabow S, Delbridge AR, Aubrey BJ, Vandenberg CJ, Strasser A. Loss of a single Mcl-1 allele inhibits MYC-driven lymphomagenesis by sensitizing Pro-B cells to apoptosis. Cell Rep. 2016;14:2337–47.
pubmed: 26947081 doi: 10.1016/j.celrep.2016.02.039
Hikita H, Takehara T, Shimizu S, Kodama T, Li W, Miyagi T, et al. Mcl-1 and Bcl-xL cooperatively maintain integrity of hepatocytes in developing and adult murine liver. Hepatology. 2009;50:1217–26.
pubmed: 19676108 doi: 10.1002/hep.23126
Merino D, Kelly GL, Lessene G, Wei AH, Roberts AW, Strasser A. BH3-mimetic drugs: blazing the trail for new cancer medicines. Cancer Cell. 2018;34:879–91.
pubmed: 30537511 doi: 10.1016/j.ccell.2018.11.004
Dixon SJ, Lemberg KM, Lamprecht MR, Skouta R, Zaitsev EM, Gleason CE, et al. Ferroptosis: an iron-dependent form of nonapoptotic cell death. Cell. 2012;149:1060–72.
pubmed: 22632970 pmcid: 3367386 doi: 10.1016/j.cell.2012.03.042
Polewski MD, Reveron-Thornton RF, Cherryholmes GA, Marinov GK, Aboody KS. SLC7A11 overexpression in glioblastoma is associated with increased cancer stem cell-like properties. Stem Cells Dev. 2017;26:1236–46.
pubmed: 28610554 pmcid: 5576215 doi: 10.1089/scd.2017.0123
Chen L, Li X, Liu L, Yu B, Xue Y, Liu Y. Erastin sensitizes glioblastoma cells to temozolomide by restraining xCT and cystathionine-gamma-lyase function. Oncol Rep. 2015;33:1465–74.
pubmed: 25585997 doi: 10.3892/or.2015.3712
Zhang Y, Tan H, Daniels JD, Zandkarimi F, Liu H, Brown LM. et al.Imidazole ketone erastin induces ferroptosis and slows tumor growth in a mouse lymphoma model.Cell Chem Biol. 2019;26:623–33. e9.
pubmed: 30799221 pmcid: 6525071 doi: 10.1016/j.chembiol.2019.01.008
Stupp R, Mason WP, van den Bent MJ, Weller M, Fisher B, Taphoorn MJ, et al. Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N Engl J Med. 2005;352:987–96.
pubmed: 15758009 doi: 10.1056/NEJMoa043330
Floyd SR, Pacold ME, Huang Q, Clarke SM, Lam FC, Cannell IG, et al. The bromodomain protein Brd4 insulates chromatin from DNA damage signalling. Nature. 2013;498:246–50.
pubmed: 23728299 pmcid: 3683358 doi: 10.1038/nature12147
Li GQ, Guo WZ, Zhang Y, Seng JJ, Zhang HP, Ma XX, et al. Suppression of BRD4 inhibits human hepatocellular carcinoma by repressing MYC and enhancing BIM expression. Oncotarget. 2016;7:2462–74.
pubmed: 26575167 doi: 10.18632/oncotarget.6275
Ishida CT, Bianchetti E, Shu C, Halatsch ME, Westhoff MA, Karpel-Massler G, et al. BH3-mimetics and BET-inhibitors elicit enhanced lethality in malignant glioma. Oncotarget. 2017;8:29558–73.
pubmed: 28418907 pmcid: 5444687 doi: 10.18632/oncotarget.16365
Cheng Z, Gong Y, Ma Y, Lu K, Lu X, Pierce LA, et al. Inhibition of BET bromodomain targets genetically diverse glioblastoma. Clin Cancer Res. 2013;19:1748–59.
pubmed: 23403638 pmcid: 4172367 doi: 10.1158/1078-0432.CCR-12-3066
Lam FC, Morton SW, Wyckoff J, Vu Han TL, Hwang MK, Maffa A, et al. Enhanced efficacy of combined temozolomide and bromodomain inhibitor therapy for gliomas using targeted nanoparticles. Nat Commun. 2018;9:1991.
pubmed: 29777137 pmcid: 5959860 doi: 10.1038/s41467-018-04315-4
Tse C, Shoemaker AR, Adickes J, Anderson MG, Chen J, Jin S, et al. ABT-263: a potent and orally bioavailable Bcl-2 family inhibitor. Cancer Res. 2008;68:3421–8.
pubmed: 18451170 doi: 10.1158/0008-5472.CAN-07-5836
Zhang J, Stevens MF, Bradshaw TD. Temozolomide: mechanisms of action, repair and resistance. Curr Mol Pharm. 2012;5:102–14.
doi: 10.2174/1874467211205010102
Shen W, Hu JA, Zheng JS. Mechanism of temozolomide-induced antitumour effects on glioma cells. J Int Med Res. 2014;42:164–72.
pubmed: 24326954 doi: 10.1177/0300060513501753
Delbridge AR, Strasser A. The BCL-2 protein family, BH3-mimetics and cancer therapy. Cell Death Differ. 2015;22:1071–80.
pubmed: 25952548 pmcid: 4572872 doi: 10.1038/cdd.2015.50
Strasser A, O’Connor L, Dixit VM. Apoptosis signaling. Annu Rev Biochem. 2000;69:217–45.
pubmed: 10966458 doi: 10.1146/annurev.biochem.69.1.217
Yamaguchi H, Bhalla K, Wang HG. Bax plays a pivotal role in thapsigargin-induced apoptosis of human colon cancer HCT116 cells by controlling Smac/Diablo and Omi/HtrA2 release from mitochondria. Cancer Res. 2003;63:1483–9.
pubmed: 12670894
Abbott RC, Verdon DJ, Gracey FM, Hughes-Parry HE, Iliopoulos M, Watson KA, et al. Novel high-affinity EGFRvIII-specific chimeric antigen receptor T cells effectively eliminate human glioblastoma. Clin Transl Immunology 2021;10:e1283.
pubmed: 33976881 pmcid: 8106904 doi: 10.1002/cti2.1317
Mason KD, Carpinelli MR, Fletcher JI, Collinge JE, Hilton AA, Ellis S, et al. Programmed anuclear cell death delimits platelet life span. Cell. 2007;128:1173–86.
pubmed: 17382885 doi: 10.1016/j.cell.2007.01.037
Hassannia B, Vandenabeele P, Vanden Berghe T. Targeting ferroptosis to iron out cancer. Cancer Cell. 2019;35:830–49.
pubmed: 31105042 doi: 10.1016/j.ccell.2019.04.002
Polewski MD, Reveron-Thornton RF, Cherryholmes GA, Marinov GK, Cassady K, Aboody KS. Increased expression of system xc- in glioblastoma confers an altered metabolic state and temozolomide resistance. Mol Cancer Res. 2016;14:1229–42.
pubmed: 27658422 pmcid: 6237285 doi: 10.1158/1541-7786.MCR-16-0028
Aldape K, Brindle KM, Chesler L, Chopra R, Gajjar A, Gilbert MR, et al. Challenges to curing primary brain tumours. Nat Rev Clin Oncol. 2019;16:509–20.
pubmed: 30733593 pmcid: 6650350 doi: 10.1038/s41571-019-0177-5
Leverson JD, Phillips DC, Mitten MJ, Boghaert ER, Diaz D, Tahir SK, et al. Exploiting selective BCL-2 family inhibitors to dissect cell survival dependencies and define improved strategies for cancer therapy. Sci Transl Med. 2015;7:279ra40.
pubmed: 25787766 doi: 10.1126/scitranslmed.aaa4642
Kehr S, Vogler M. It’s time to die: BH3 mimetics in solid tumors. Biochim Biophys Acta Mol Cell Res. 2021;1868:118987.
pubmed: 33600840 doi: 10.1016/j.bbamcr.2021.118987
Khan S, Zhang X, Lv D, Zhang Q, He Y, Zhang P, et al. A selective BCL-XL PROTAC degrader achieves safe and potent antitumor activity. Nat Med. 2019;25:1938–47.
pubmed: 31792461 pmcid: 6898785 doi: 10.1038/s41591-019-0668-z
van Tellingen O, Yetkin-Arik B, de Gooijer MC, Wesseling P, Wurdinger T, de Vries HE. Overcoming the blood-brain tumor barrier for effective glioblastoma treatment. Drug Resist Updat. 2015;19:1–12.
pubmed: 25791797 doi: 10.1016/j.drup.2015.02.002
Sarkaria JN, Hu LS, Parney IF, Pafundi DH, Brinkmann DH, Laack NN, et al. Is the blood-brain barrier really disrupted in all glioblastomas? A critical assessment of existing clinical data. Neuro Oncol. 2018;20:184–91.
pubmed: 29016900 doi: 10.1093/neuonc/nox175
Yu Y, Xie Y, Cao L, Yang L, Yang M, Lotze MT, et al. The ferroptosis inducer erastin enhances sensitivity of acute myeloid leukemia cells to chemotherapeutic agents. Mol Cell Oncol. 2015;2:e1054549.
pubmed: 27308510 pmcid: 4905356 doi: 10.1080/23723556.2015.1054549
Gout PW, Buckley AR, Simms CR, Bruchovsky N. Sulfasalazine, a potent suppressor of lymphoma growth by inhibition of the x(c)- cystine transporter: a new action for an old drug. Leukemia. 2001;15:1633–40.
pubmed: 11587223 doi: 10.1038/sj.leu.2402238
Liu DS, Duong CP, Haupt S, Montgomery KG, House CM, Azar WJ, et al. Inhibiting the system xC(-)/glutathione axis selectively targets cancers with mutant-p53 accumulation. Nat Commun. 2017;8:14844.
pubmed: 28348409 pmcid: 5379068 doi: 10.1038/ncomms14844
Sato M, Kusumi R, Hamashima S, Kobayashi S, Sasaki S, Komiyama Y, et al. The ferroptosis inducer erastin irreversibly inhibits system xc- and synergizes with cisplatin to increase cisplatin’s cytotoxicity in cancer cells. Sci Rep. 2018;8:968.
pubmed: 29343855 pmcid: 5772355 doi: 10.1038/s41598-018-19213-4
Huang Y, Dai Z, Barbacioru C, Sadee W. Cystine-glutamate transporter SLC7A11 in cancer chemosensitivity and chemoresistance. Cancer Res. 2005;65:7446–54.
pubmed: 16103098 doi: 10.1158/0008-5472.CAN-04-4267
Koppula P, Zhuang L, Gan B. Cystine transporter SLC7A11/xCT in cancer: ferroptosis, nutrient dependency, and cancer therapy. Protein Cell. 2020;12:599–620.
pubmed: 33000412 pmcid: 8310547 doi: 10.1007/s13238-020-00789-5
Jiang L, Kon N, Li T, Wang SJ, Su T, Hibshoosh H, et al. Ferroptosis as a p53-mediated activity during tumour suppression. Nature. 2015;520:57–62.
pubmed: 25799988 pmcid: 4455927 doi: 10.1038/nature14344
Yang X, Liu J, Wang C, Cheng KK, Xu H, Li Q, et al. miR-18a promotes glioblastoma development by down-regulating ALOXE3-mediated ferroptotic and anti-migration activities. Oncogenesis. 2021;10:15.
pubmed: 33579899 pmcid: 7881152 doi: 10.1038/s41389-021-00304-3
Fan Z, Wirth AK, Chen D, Wruck CJ, Rauh M, Buchfelder M, et al. Nrf2-Keap1 pathway promotes cell proliferation and diminishes ferroptosis. Oncogenesis. 2017;6:e371.
pubmed: 28805788 pmcid: 5608917 doi: 10.1038/oncsis.2017.65
Robe PA, Martin D, Albert A, Deprez M, Chariot A, Bours V. A phase 1-2, prospective, double blind, randomized study of the safety and efficacy of Sulfasalazine for the treatment of progressing malignant gliomas: study protocol of [ISRCTN45828668]. BMC Cancer. 2006;6:29.
pubmed: 16448552 pmcid: 1368982 doi: 10.1186/1471-2407-6-29
Robe PA, Martin DH, Nguyen-Khac MT, Artesi M, Deprez M, Albert A, et al. Early termination of ISRCTN45828668, a phase 1/2 prospective, randomized study of sulfasalazine for the treatment of progressing malignant gliomas in adults. BMC Cancer. 2009;9:372.
pubmed: 19840379 pmcid: 2771045 doi: 10.1186/1471-2407-9-372
Larraufie MH, Yang WS, Jiang E, Thomas AG, Slusher BS, Stockwell BR. Incorporation of metabolically stable ketones into a small molecule probe to increase potency and water solubility. Bioorg Med Chem Lett. 2015;25:4787–92.
pubmed: 26231156 pmcid: 4653046 doi: 10.1016/j.bmcl.2015.07.018
Mao C, Liu X, Zhang Y, Lei G, Yan Y, Lee H, et al. DHODH-mediated ferroptosis defence is a targetable vulnerability in cancer. Nature. 2021;593:586–90.
pubmed: 33981038 pmcid: 8895686 doi: 10.1038/s41586-021-03539-7
Aubrey BJ, Kelly GL, Kueh AJ, Brennan MS, O’Connor L, Milla L, et al. An inducible lentiviral guide RNA platform enables the identification of tumor-essential genes and tumor-promoting mutations in vivo. Cell Rep. 2015;10:1422–32.
pubmed: 25732831 doi: 10.1016/j.celrep.2015.02.002
Chin HS, Li MX, Tan IKL, Ninnis RL, Reljic B, Scicluna K, et al. VDAC2 enables BAX to mediate apoptosis and limit tumor development. Nat Commun. 2018;9:4976.
pubmed: 30478310 pmcid: 6255874 doi: 10.1038/s41467-018-07309-4
Southon A, Szostak K, Acevedo KM, Dent KA, Volitakis I, Belaidi AA, et al. Cu(II) (atsm) inhibits ferroptosis: Implications for treatment of neurodegenerative disease. Br J Pharm. 2020;177:656–67.
doi: 10.1111/bph.14881

Auteurs

Diane Moujalled (D)

The Walter and Eliza Hall Institute, Melbourne, VIC, Australia. dmoujalled@wehi.edu.au.
Department of Medical Biology, The University of Melbourne, Parkville, VIC, 3010, Australia. dmoujalled@wehi.edu.au.

Adam G Southon (AG)

Melbourne Dementia Research Centre, Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Melbourne, VIC, Australia.

Eiman Saleh (E)

The Walter and Eliza Hall Institute, Melbourne, VIC, Australia.

Kerstin Brinkmann (K)

The Walter and Eliza Hall Institute, Melbourne, VIC, Australia.
Department of Medical Biology, The University of Melbourne, Parkville, VIC, 3010, Australia.

Francine Ke (F)

The Walter and Eliza Hall Institute, Melbourne, VIC, Australia.
Department of Medical Biology, The University of Melbourne, Parkville, VIC, 3010, Australia.

Melinda Iliopoulos (M)

The Walter and Eliza Hall Institute, Melbourne, VIC, Australia.

Ryan S Cross (RS)

The Walter and Eliza Hall Institute, Melbourne, VIC, Australia.
Department of Medical Biology, The University of Melbourne, Parkville, VIC, 3010, Australia.

Misty R Jenkins (MR)

The Walter and Eliza Hall Institute, Melbourne, VIC, Australia.
Department of Medical Biology, The University of Melbourne, Parkville, VIC, 3010, Australia.

Duong Nhu (D)

The Walter and Eliza Hall Institute, Melbourne, VIC, Australia.
Department of Medical Biology, The University of Melbourne, Parkville, VIC, 3010, Australia.

Zilu Wang (Z)

The Walter and Eliza Hall Institute, Melbourne, VIC, Australia.
Department of Medical Biology, The University of Melbourne, Parkville, VIC, 3010, Australia.

Melissa X Shi (MX)

The Walter and Eliza Hall Institute, Melbourne, VIC, Australia.

Ruth M Kluck (RM)

The Walter and Eliza Hall Institute, Melbourne, VIC, Australia.
Department of Medical Biology, The University of Melbourne, Parkville, VIC, 3010, Australia.

Guillaume Lessene (G)

The Walter and Eliza Hall Institute, Melbourne, VIC, Australia.
Department of Medical Biology, The University of Melbourne, Parkville, VIC, 3010, Australia.
Department of Pharmacology and Therapeutics, The University of Melbourne, Parkville, VIC, 3010, Australia.

Stephanie Grabow (S)

The Walter and Eliza Hall Institute, Melbourne, VIC, Australia.
Department of Medical Biology, The University of Melbourne, Parkville, VIC, 3010, Australia.
Vividion Therapeutics, San Diego, CA, 92121, USA.

Ashley I Bush (AI)

Melbourne Dementia Research Centre, Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Melbourne, VIC, Australia.

Andreas Strasser (A)

The Walter and Eliza Hall Institute, Melbourne, VIC, Australia. strasser@wehi.edu.au.
Department of Medical Biology, The University of Melbourne, Parkville, VIC, 3010, Australia. strasser@wehi.edu.au.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH