Chromatin domain alterations linked to 3D genome organization in a large cohort of schizophrenia and bipolar disorder brains.


Journal

Nature neuroscience
ISSN: 1546-1726
Titre abrégé: Nat Neurosci
Pays: United States
ID NLM: 9809671

Informations de publication

Date de publication:
04 2022
Historique:
received: 02 06 2021
accepted: 09 02 2022
pubmed: 26 3 2022
medline: 9 4 2022
entrez: 25 3 2022
Statut: ppublish

Résumé

Chromosomal organization, scaling from the 147-base pair (bp) nucleosome to megabase-ranging domains encompassing multiple transcriptional units, including heritability loci for psychiatric traits, remains largely unexplored in the human brain. In this study, we constructed promoter- and enhancer-enriched nucleosomal histone modification landscapes for adult prefrontal cortex from H3-lysine 27 acetylation and H3-lysine 4 trimethylation profiles, generated from 388 controls and 351 individuals diagnosed with schizophrenia (SCZ) or bipolar disorder (BD) (n = 739). We mapped thousands of cis-regulatory domains (CRDs), revealing fine-grained, 10

Identifiants

pubmed: 35332326
doi: 10.1038/s41593-022-01032-6
pii: 10.1038/s41593-022-01032-6
pmc: PMC8989650
mid: NIHMS1779367
doi:

Substances chimiques

Chromatin 0
Lysine K3Z4F929H6

Types de publication

Journal Article Research Support, N.I.H., Extramural Research Support, N.I.H., Intramural

Langues

eng

Sous-ensembles de citation

IM

Pagination

474-483

Subventions

Organisme : NIMH NIH HHS
ID : R01 MH094714
Pays : United States
Organisme : NIMH NIH HHS
ID : R21 MH103877
Pays : United States
Organisme : NIMH NIH HHS
ID : U01 MH103365
Pays : United States
Organisme : NIMH NIH HHS
ID : U01 MH103392
Pays : United States
Organisme : NIMH NIH HHS
ID : DP1 MH129957
Pays : United States
Organisme : NIMH NIH HHS
ID : U01 MH103346
Pays : United States
Organisme : NIMH NIH HHS
ID : U01 MH103340
Pays : United States
Organisme : NIMH NIH HHS
ID : U01 MH103339
Pays : United States
Organisme : NIDA NIH HHS
ID : U01 DA048279
Pays : United States
Organisme : NIMH NIH HHS
ID : P50 MH096890
Pays : United States
Organisme : NIMH NIH HHS
ID : R21 MH105881
Pays : United States
Organisme : NINDS NIH HHS
ID : R01 NS114226
Pays : United States
Organisme : NIMH NIH HHS
ID : P50 MH106934
Pays : United States
Organisme : NIMH NIH HHS
ID : R01 MH105472
Pays : United States
Organisme : NIMH NIH HHS
ID : R01 MH106056
Pays : United States
Organisme : Intramural NIH HHS
ID : ZIC MH002903
Pays : United States
Organisme : NIMH NIH HHS
ID : R21 MH102791
Pays : United States
Organisme : NIMH NIH HHS
ID : R01 MH105898
Pays : United States

Informations de copyright

© 2022. The Author(s), under exclusive licence to Springer Nature America, Inc.

Références

Dixon, J. R. et al. Chromatin architecture reorganization during stem cell differentiation. Nature 518, 331–336 (2015).
pubmed: 25693564 pmcid: 4515363 doi: 10.1038/nature14222
Girdhar, K. et al. Cell-specific histone modification maps in the human frontal lobe link schizophrenia risk to the neuronal epigenome. Nat. Neurosci. 21, 1126–1136 (2018).
pubmed: 30038276 pmcid: 6063773 doi: 10.1038/s41593-018-0187-0
Cheung, I. et al. Developmental regulation and individual differences of neuronal H3K4me3 epigenomes in the prefrontal cortex. Proc. Natl Acad. Sci. USA 107, 8824–8829 (2010).
pubmed: 20421462 pmcid: 2889328 doi: 10.1073/pnas.1001702107
Khan, A., Mathelier, A. & Zhang, X. Super-enhancers are transcriptionally more active and cell type-specific than stretch enhancers. Epigenetics 13, 910–922 (2018).
pubmed: 30169995 pmcid: 6284781 doi: 10.1080/15592294.2018.1514231
Network and Pathway Analysis Subgroup of Psychiatric Genomics Consortium. Psychiatric genome-wide association study analyses implicate neuronal, immune and histone pathways. Nat. Neurosci. 18, 199–209 (2015).
doi: 10.1038/nn.3922
Roussos, P. et al. A role for noncoding variation in schizophrenia. Cell Rep. 9, 1417–1429 (2014).
pubmed: 25453756 pmcid: 4255904 doi: 10.1016/j.celrep.2014.10.015
Takata, A. et al. Loss-of-function variants in schizophrenia risk and SETD1A as a candidate susceptibility gene. Neuron 82, 773–780 (2014).
pubmed: 24853937 pmcid: 4387883 doi: 10.1016/j.neuron.2014.04.043
Fullard, J. F. et al. An atlas of chromatin accessibility in the adult human brain. Genome Res. 28, 1243–1252 (2018).
pubmed: 29945882 pmcid: 6071637 doi: 10.1101/gr.232488.117
Hauberg, M. E. et al. Common schizophrenia risk variants are enriched in open chromatin regions of human glutamatergic neurons. Nat. Commun. 11, 5581 (2020).
pubmed: 33149216 pmcid: 7643171 doi: 10.1038/s41467-020-19319-2
Smigielski, L., Jagannath, V., Rössler, W., Walitza, S. & Grünblatt, E. Epigenetic mechanisms in schizophrenia and other psychotic disorders: a systematic review of empirical human findings. Mol. Psychiatry 25, 1718–1748 (2020).
pubmed: 31907379 doi: 10.1038/s41380-019-0601-3
Fromer, M. et al. Gene expression elucidates functional impact of polygenic risk for schizophrenia. Nat. Neurosci. 19, 1442–1453 (2016).
pubmed: 27668389 pmcid: 5083142 doi: 10.1038/nn.4399
Hoffman, G. E. et al. CommonMind Consortium provides transcriptomic and epigenomic data for schizophrenia and bipolar disorder. Sci. Data 6, 180 (2019).
pubmed: 31551426 pmcid: 6760149 doi: 10.1038/s41597-019-0183-6
Hauberg, M. E. et al. Differential activity of transcribed enhancers in the prefrontal cortex of 537 cases with schizophrenia and controls. Mol. Psychiatry 24, 1685–1695 (2019).
pubmed: 29740122 doi: 10.1038/s41380-018-0059-8
Kozlenkov, A. et al. A unique role for DNA (hydroxy)methylation in epigenetic regulation of human inhibitory neurons. Sci. Adv. 4, eaau6190 (2018).
pubmed: 30263963 pmcid: 6157969 doi: 10.1126/sciadv.aau6190
Wong, A. H. C. et al. Association between schizophrenia and the syntaxin 1A gene. Biol. Psychiatry 56, 24–29 (2004).
pubmed: 15219469 doi: 10.1016/j.biopsych.2004.03.008
Bryois, J. et al. Evaluation of chromatin accessibility in prefrontal cortex of individuals with schizophrenia. Nat. Commun. 9, 3121 (2018).
pubmed: 30087329 pmcid: 6081462 doi: 10.1038/s41467-018-05379-y
Finucane, H. K. et al. Partitioning heritability by functional annotation using genome-wide association summary statistics. Nat. Genet. 47, 1228–1235 (2015).
pubmed: 26414678 pmcid: 4626285 doi: 10.1038/ng.3404
Madani Tonekaboni, S. A., Mazrooei, P., Kofia, V., Haibe-Kains, B. & Lupien, M. Identifying clusters of cis-regulatory elements underpinning TAD structures and lineage-specific regulatory networks. Genome Res. 29, 1733–1743 (2019).
pubmed: 31533978 pmcid: 6771399 doi: 10.1101/gr.248658.119
Bendl, J. et al. The three-dimensional landscape of chromatin accessibility in Alzheimer’s disease. Preprint at https://www.biorxiv.org/content/10.1101/2021.01.11.426303v1 (2021).
Dong, P. et al. Population-level variation of enhancer expression identifies novel disease mechanisms in the human brain. Preprint at https://www.biorxiv.org/content/biorxiv/early/2021/06/11/2021.05.14.443421.full.pdf (2021).
Delaneau, O. et al. Chromatin three-dimensional interactions mediate genetic effects on gene expression. Science 364, eaat8266 (2019).
Waszak, S. M. et al. Population variation and genetic control of modular chromatin architecture in humans. Cell 162, 1039–1050 (2015).
pubmed: 26300124 doi: 10.1016/j.cell.2015.08.001
Hoffman, G. E., Bendl, J., Girdhar, K. & Roussos, P. decorate: differential epigenetic correlation test. Bioinformatics 36, 2856–2861 (2020).
pubmed: 32003784 pmcid: 7203736 doi: 10.1093/bioinformatics/btaa067
Ambroise, C., Dehman, A., Neuvial, P., Rigaill, G. & Vialaneix, N. Adjacency-constrained hierarchical clustering of a band similarity matrix with application to genomics. Algorithms Mol. Biol. 14, 22 (2019).
pubmed: 31807137 pmcid: 6857244 doi: 10.1186/s13015-019-0157-4
Beagan, J. A. & Phillips-Cremins, J. E. On the existence and functionality of topologically associating domains. Nat. Genet. 52, 8–16 (2020).
pubmed: 31925403 pmcid: 7567612 doi: 10.1038/s41588-019-0561-1
Nuebler, J., Fudenberg, G., Imakaev, M., Abdennur, N. & Mirny, L. A. Chromatin organization by an interplay of loop extrusion and compartmental segregation. Proc. Natl Acad. Sci. USA 115, E6697–E6706 (2018).
pubmed: 29967174 pmcid: 6055145 doi: 10.1073/pnas.1717730115
Kichaev, G. et al. Leveraging polygenic functional enrichment to improve GWAS power. Am. J. Hum. Genet. 104, 65–75 (2019).
pubmed: 30595370 doi: 10.1016/j.ajhg.2018.11.008
Dixon, J. R. et al. Topological domains in mammalian genomes identified by analysis of chromatin interactions. Nature 485, 376–380 (2012).
pubmed: 22495300 pmcid: 3356448 doi: 10.1038/nature11082
Lazar, N. H. et al. Epigenetic maintenance of topological domains in the highly rearranged gibbon genome. Genome Res. 28, 983–997 (2018).
pubmed: 29914971 pmcid: 6028127 doi: 10.1101/gr.233874.117
Hoffman, G. E. et al. Sex differences in the human brain transcriptome of cases with schizophrenia. Biol. Psychiatry 91, 92–101 (2022).
pubmed: 34154796 doi: 10.1016/j.biopsych.2021.03.020
Li, M. et al. Integrative functional genomic analysis of human brain development and neuropsychiatric risks. Science 362, eaat7615 (2018).
pubmed: 30545854 pmcid: 6413317 doi: 10.1126/science.aat7615
Paulsen, J. et al. Chrom3D: three-dimensional genome modeling from Hi-C and nuclear lamin-genome contacts. Genome Biol. 18, 21 (2017).
pubmed: 28137286 pmcid: 5278575 doi: 10.1186/s13059-016-1146-2
Paulsen, J., Liyakat Ali, T. M. & Collas, P. Computational 3D genome modeling using Chrom3D. Nat. Protoc. 13, 1137–1152 (2018).
pubmed: 29700484 doi: 10.1038/nprot.2018.009
Tseng, C.-E. J. et al. In vivo human brain expression of histone deacetylases in bipolar disorder. Transl. Psychiatry 10, 224 (2020).
pubmed: 32641695 pmcid: 7343804 doi: 10.1038/s41398-020-00911-5
Gilbert, T. M. et al. PET neuroimaging reveals histone deacetylase dysregulation in schizophrenia. J. Clin. Invest. 129, 364–372 (2019).
pubmed: 30530989 doi: 10.1172/JCI123743
Schroeder, F. A. et al. Expression of HDAC2 but not HDAC1 transcript is reduced in dorsolateral prefrontal cortex of patients with schizophrenia. ACS Chem. Neurosci. 8, 662–668 (2017).
pubmed: 27959513 doi: 10.1021/acschemneuro.6b00372
Bahari-Javan, S. et al. HDAC1 links early life stress to schizophrenia-like phenotypes. Proc. Natl Acad. Sci. USA 114, E4686–E4694 (2017).
pubmed: 28533418 pmcid: 5468618 doi: 10.1073/pnas.1613842114
Jakovcevski, M. et al. Prefrontal cortical dysfunction after overexpression of histone deacetylase 1. Biol. Psychiatry 74, 696–705 (2013).
pubmed: 23664640 pmcid: 3797203 doi: 10.1016/j.biopsych.2013.03.020
Schroeder, F. A., Lin, C. L., Crusio, W. E. & Akbarian, S. Antidepressant-like effects of the histone deacetylase inhibitor, sodium butyrate, in the mouse. Biol. Psychiatry 62, 55–64 (2007).
pubmed: 16945350 doi: 10.1016/j.biopsych.2006.06.036
de la Fuente Revenga, M. et al. HDAC2-dependent antipsychotic-like effects of chronic treatment with the HDAC inhibitor SAHA in mice. Neuroscience 388, 102–117 (2018).
pubmed: 30025863 doi: 10.1016/j.neuroscience.2018.07.010
Thomas, E. A. Histone posttranslational modifications in schizophrenia. Adv. Exp. Med. Biol. 978, 237–254 (2017).
pubmed: 28523550 doi: 10.1007/978-3-319-53889-1_13
Shulha, H. P., Cheung, I., Guo, Y., Akbarian, S. & Weng, Z. Coordinated cell type–specific epigenetic remodeling in prefrontal cortex begins before birth and continues into early adulthood. PLoS Genetics 9, e1003433 (2013).
pubmed: 23593028 pmcid: 3623761 doi: 10.1371/journal.pgen.1003433
Connor, C. M. et al. Maternal immune activation alters behavior in adult offspring, with subtle changes in the cortical transcriptome and epigenome. Schizophr. Res. 140, 175–184 (2012).
pubmed: 22804924 pmcid: 3568668 doi: 10.1016/j.schres.2012.06.037
Jaffe, A. E. et al. Mapping DNA methylation across development, genotype and schizophrenia in the human frontal cortex. Nat. Neurosci. 19, 40–47 (2016).
pubmed: 26619358 doi: 10.1038/nn.4181
Hannon, E. et al. Methylation QTLs in the developing brain and their enrichment in schizophrenia risk loci. Nat. Neurosci. 19, 48–54 (2016).
pubmed: 26619357 doi: 10.1038/nn.4182
Ruzicka, W. B. et al. Single-cell dissection of schizophrenia reveals neurodevelopmental-synaptic axis and transcriptional resilience. Preprint at https://www.medrxiv.org/content/10.1101/2020.11.06.20225342v1 (2020).
Dienel, S. J., Enwright, J. F., Hoftman, G. D. & Lewis, D. A. Markers of glutamate and GABA neurotransmission in the prefrontal cortex of schizophrenia subjects: disease effects differ across anatomical levels of resolution. Schizophr. Res. 217, 86–94 (2020).
pubmed: 31296415 doi: 10.1016/j.schres.2019.06.003
Bonev, B. et al. Multiscale 3D genome rewiring during mouse neural development. Cell 171, 557–572 (2017).
pubmed: 29053968 pmcid: 5651218 doi: 10.1016/j.cell.2017.09.043
Lomvardas, S. et al. Interchromosomal interactions and olfactory receptor choice. Cell 126, 403–413 (2006).
pubmed: 16873069 doi: 10.1016/j.cell.2006.06.035
Quinodoz, S. A. et al. Higher-order inter-chromosomal hubs shape 3D genome organization in the nucleus. Cell 174, 744–757 (2018).
pubmed: 29887377 pmcid: 6548320 doi: 10.1016/j.cell.2018.05.024
Khanna, N., Hu, Y. & Belmont, A. S. HSP70 transgene directed motion to nuclear speckles facilitates heat shock activation. Curr. Biol. 24, 1138–1144 (2014).
pubmed: 24794297 pmcid: 4030642 doi: 10.1016/j.cub.2014.03.053
Ahanger, S. H. et al. Distinct nuclear compartment-associated genome architecture in the developing mammalian brain. Nat. Neurosci. 24, 1235–1242 (2021).
pubmed: 34239128 pmcid: 8410652 doi: 10.1038/s41593-021-00879-5
Legge, S. E. et al. Associations between schizophrenia polygenic liability, symptom dimensions, and cognitive ability in schizophrenia. JAMA Psychiatry 8, 1143–1151 (2021).
Wang, D. et al. Comprehensive functional genomic resource and integrative model for the human brain. Science 362, eaat8464 (2018).
Kundakovic, M. et al. Practical guidelines for high-resolution epigenomic profiling of nucleosomal histones in postmortem human brain tissue. Biol. Psychiatry 81, 162–170 (2017).
pubmed: 27113501 doi: 10.1016/j.biopsych.2016.03.1048
Jiang, Y., Matevossian, A., Huang, H.-S., Straubhaar, J. & Akbarian, S. Isolation of neuronal chromatin from brain tissue. BMC Neurosci. 9, 42 (2008).
pubmed: 18442397 pmcid: 2377267 doi: 10.1186/1471-2202-9-42
Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30, 2114–2120 (2014).
pubmed: 24695404 pmcid: 4103590 doi: 10.1093/bioinformatics/btu170
Li, H. & Durbin, R. Fast and accurate short read alignment with Burrows–Wheeler transform. Bioinformatics 25, 1754–1760 (2009).
pubmed: 19451168 pmcid: 2705234 doi: 10.1093/bioinformatics/btp324
Landt, S. G. et al. ChIP-seq guidelines and practices of the ENCODE and modENCODE consortia. Genome Res. 22, 1813–1831 (2012).
pubmed: 22955991 pmcid: 3431496 doi: 10.1101/gr.136184.111
Fort, A. et al. MBV: a method to solve sample mislabeling and detect technical bias in large combined genotype and sequencing assay datasets. Bioinformatics 33, 1895–1897 (2017).
pubmed: 28186259 pmcid: 6044394 doi: 10.1093/bioinformatics/btx074
Zhang, Y. et al. Model-based Analysis of ChIP-Seq (MACS). Genome Biol. 9, R137 (2008).
pubmed: 18798982 pmcid: 2592715 doi: 10.1186/gb-2008-9-9-r137
Amemiya, H. M., Kundaje, A. & Boyle, A. P. The ENCODE blacklist: identification of problematic regions of the genome. Sci. Rep. 9, 9354 (2019).
pubmed: 31249361 pmcid: 6597582 doi: 10.1038/s41598-019-45839-z
Liao, Y., Smyth, G. K. & Shi, W. featureCounts: an efficient general purpose program for assigning sequence reads to genomic features. Bioinformatics 30, 923–930 (2014).
pubmed: 24227677 doi: 10.1093/bioinformatics/btt656
Robinson, M. D., McCarthy, D. J. & Smyth, G. K. edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 26, 139–140 (2010).
pubmed: 19910308 doi: 10.1093/bioinformatics/btp616
Hunt, G. J., Freytag, S., Bahlo, M. & Gagnon-Bartsch, J. A. dtangle: accurate and robust cell type deconvolution. Bioinformatics 35, 2093–2099 (2019).
pubmed: 30407492 doi: 10.1093/bioinformatics/bty926
Neath, A. A. & Cavanaugh, J. E. The Bayesian information criterion: background, derivation, and applications. WIREs Computational Statistics https://doi.org/10.1002/wics.199 (2011).
Yu, G., Wang, L.-G. & He, Q.-Y. ChIPseeker: an R/Bioconductor package for ChIP peak annotation, comparison and visualization. Bioinformatics 31, 2382–2383 (2015).
pubmed: 25765347 doi: 10.1093/bioinformatics/btv145
Ernst, J. & Kellis, M. Chromatin-state discovery and genome annotation with ChromHMM. Nat. Protoc. 12, 2478–2492 (2017).
pubmed: 29120462 pmcid: 5945550 doi: 10.1038/nprot.2017.124
Ritchie, M. E. et al. limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res. 43, e47 (2015).
pubmed: 25605792 pmcid: 4402510 doi: 10.1093/nar/gkv007
Viechtbauer, W. Conducting meta-analyses in R with the metafor package. J. Stat. Softw. 36, 1–48 (2010).
McLean, C. Y. et al. GREAT improves functional interpretation of cis-regulatory regions. Nat. Biotechnol. 28, 495–501 (2010).
pubmed: 20436461 pmcid: 4840234 doi: 10.1038/nbt.1630
de Leeuw, C. A., Mooij, J. M., Heskes, T. & Posthuma, D. MAGMA: generalized gene-set analysis of GWAS data. PLoS Comput. Biol. 11, e1004219 (2015).
pubmed: 25885710 pmcid: 4401657 doi: 10.1371/journal.pcbi.1004219
Stegle, O., Parts, L., Piipari, M., Winn, J. & Durbin, R. Using probabilistic estimation of expression residuals (PEER) to obtain increased power and interpretability of gene expression analyses. Nat. Protoc. 7, 500–507 (2012).
pubmed: 22343431 pmcid: 3398141 doi: 10.1038/nprot.2011.457
ENCODE Project Consortium. An integrated encyclopedia of DNA elements in the human genome. Nature 489, 57–74 (2012).
doi: 10.1038/nature11247
Kumar, V. et al. Uniform, optimal signal processing of mapped deep-sequencing data. Nat. Biotechnol. 31, 615–622 (2013).
pubmed: 23770639 doi: 10.1038/nbt.2596
Kozlenkov, A. et al. Substantial DNA methylation differences between two major neuronal subtypes in human brain. Nucleic Acids Res. 44, 2593–2612 (2016).
pubmed: 26612861 doi: 10.1093/nar/gkv1304
Van den Berge, K., Soneson, C., Robinson, M. D. & Clement, L. stageR: a general stage-wise method for controlling the gene-level false discovery rate in differential expression and differential transcript usage. Genome Biol. 18, 151 (2017).
pubmed: 28784146 pmcid: 5547545 doi: 10.1186/s13059-017-1277-0
Forgy, E. Cluster analysis of multivariate data: efficiency versus interpretability of classifications. Biometrics 21, 768–780 (1965).
Servant, N. et al. HiC-Pro: an optimized and flexible pipeline for Hi-C data processing. Genome Biol. 16, 259 (2015).
pubmed: 26619908 pmcid: 4665391 doi: 10.1186/s13059-015-0831-x
Ramírez, F. et al. High-resolution TADs reveal DNA sequences underlying genome organization in flies. Nat. Commun. 9, 189 (2018).
pubmed: 29335486 pmcid: 5768762 doi: 10.1038/s41467-017-02525-w
Abdennur, N. & Mirny, L. A. Cooler: scalable storage for Hi-C data and other genomically labeled arrays. Bioinformatics 36, 311–316 (2020).
pubmed: 31290943 doi: 10.1093/bioinformatics/btz540

Auteurs

Kiran Girdhar (K)

Pamela Sklar Division of Psychiatric Genomics, Icahn School of Medicine at Mount Sinai, New York, NY, USA. kiran.girdhar@mssm.edu.
Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY, USA. kiran.girdhar@mssm.edu.
Department of Genetics and Genomic Science, Icahn School of Medicine at Mount Sinai, New York, NY, USA. kiran.girdhar@mssm.edu.

Gabriel E Hoffman (GE)

Pamela Sklar Division of Psychiatric Genomics, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
Department of Genetics and Genomic Science, Icahn School of Medicine at Mount Sinai, New York, NY, USA.

Jaroslav Bendl (J)

Pamela Sklar Division of Psychiatric Genomics, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
Department of Genetics and Genomic Science, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA.

Samir Rahman (S)

Pamela Sklar Division of Psychiatric Genomics, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
Department of Genetics and Genomic Science, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA.

Pengfei Dong (P)

Pamela Sklar Division of Psychiatric Genomics, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
Department of Genetics and Genomic Science, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA.

Will Liao (W)

New York Genome Center, New York, NY, USA.

Mads E Hauberg (ME)

Pamela Sklar Division of Psychiatric Genomics, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
iPSYCH, The Lundbeck Foundation Initiative for Integrative Psychiatric Research, Aarhus, Denmark.
Department of Biomedicine, Aarhus University, Aarhus, Denmark.

Laura Sloofman (L)

Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York, NY, USA.

Leanne Brown (L)

Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.

Olivia Devillers (O)

Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.

Bibi S Kassim (BS)

Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.

Jennifer R Wiseman (JR)

Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.

Royce Park (R)

Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.

Elizabeth Zharovsky (E)

Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.

Rivky Jacobov (R)

Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.

Elie Flatow (E)

Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.

Alexey Kozlenkov (A)

Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA.

Thomas Gilgenast (T)

Department of Bioengineering, School of Engineering and Applied Sciences, University of Pennsylvania, Philadelphia, PA, USA.

Jessica S Johnson (JS)

Pamela Sklar Division of Psychiatric Genomics, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
Department of Genetics and Genomic Science, Icahn School of Medicine at Mount Sinai, New York, NY, USA.

Lizette Couto (L)

Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.

Mette A Peters (MA)

Sage Bionetworks, Seattle, WA, USA.

Jennifer E Phillips-Cremins (JE)

Department of Bioengineering, School of Engineering and Applied Sciences, University of Pennsylvania, Philadelphia, PA, USA.

Chang-Gyu Hahn (CG)

Department of Psychiatry, Vickie and Jack Farber Institute for Neuroscience, Jefferson University, Philadelphia, PA, USA.

Raquel E Gur (RE)

Department of Psychiatry, University of Pennsylvania School of Medicine, Philadelphia, PA, USA.

Carol A Tamminga (CA)

Department of Psychiatry, The University of Texas Southwestern Medical School, Dallas, TX, USA.

David A Lewis (DA)

Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA.

Vahram Haroutunian (V)

Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
Mental Illness Research Education and Clinical Center (MIRECC), James J. Peters VA Medical Center, Bronx, NY, USA.

Stella Dracheva (S)

Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
Mental Illness Research Education and Clinical Center (MIRECC), James J. Peters VA Medical Center, Bronx, NY, USA.

Barbara K Lipska (BK)

Human Brain Collection Core, National Institute of Mental Health-Intramural Research Program, Bethesda, MD, USA.

Stefano Marenco (S)

Human Brain Collection Core, National Institute of Mental Health-Intramural Research Program, Bethesda, MD, USA.

Marija Kundakovic (M)

Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
Department of Biological Sciences, Fordham University, Bronx, NY, USA.

John F Fullard (JF)

Pamela Sklar Division of Psychiatric Genomics, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
Department of Genetics and Genomic Science, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA.

Yan Jiang (Y)

Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
Institutes of Brain Science, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai, China.

Panos Roussos (P)

Pamela Sklar Division of Psychiatric Genomics, Icahn School of Medicine at Mount Sinai, New York, NY, USA. panagiotis.roussos@mssm.edu.
Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY, USA. panagiotis.roussos@mssm.edu.
Department of Genetics and Genomic Science, Icahn School of Medicine at Mount Sinai, New York, NY, USA. panagiotis.roussos@mssm.edu.
Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA. panagiotis.roussos@mssm.edu.
Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA. panagiotis.roussos@mssm.edu.
Mental Illness Research Education and Clinical Center (MIRECC), James J. Peters VA Medical Center, Bronx, NY, USA. panagiotis.roussos@mssm.edu.
Center for Dementia Research, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY, USA. panagiotis.roussos@mssm.edu.

Schahram Akbarian (S)

Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA. schahram.akbarian@mssm.edu.
Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA. schahram.akbarian@mssm.edu.
Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA. schahram.akbarian@mssm.edu.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH