Chromatin domain alterations linked to 3D genome organization in a large cohort of schizophrenia and bipolar disorder brains.
Journal
Nature neuroscience
ISSN: 1546-1726
Titre abrégé: Nat Neurosci
Pays: United States
ID NLM: 9809671
Informations de publication
Date de publication:
04 2022
04 2022
Historique:
received:
02
06
2021
accepted:
09
02
2022
pubmed:
26
3
2022
medline:
9
4
2022
entrez:
25
3
2022
Statut:
ppublish
Résumé
Chromosomal organization, scaling from the 147-base pair (bp) nucleosome to megabase-ranging domains encompassing multiple transcriptional units, including heritability loci for psychiatric traits, remains largely unexplored in the human brain. In this study, we constructed promoter- and enhancer-enriched nucleosomal histone modification landscapes for adult prefrontal cortex from H3-lysine 27 acetylation and H3-lysine 4 trimethylation profiles, generated from 388 controls and 351 individuals diagnosed with schizophrenia (SCZ) or bipolar disorder (BD) (n = 739). We mapped thousands of cis-regulatory domains (CRDs), revealing fine-grained, 10
Identifiants
pubmed: 35332326
doi: 10.1038/s41593-022-01032-6
pii: 10.1038/s41593-022-01032-6
pmc: PMC8989650
mid: NIHMS1779367
doi:
Substances chimiques
Chromatin
0
Lysine
K3Z4F929H6
Types de publication
Journal Article
Research Support, N.I.H., Extramural
Research Support, N.I.H., Intramural
Langues
eng
Sous-ensembles de citation
IM
Pagination
474-483Subventions
Organisme : NIMH NIH HHS
ID : R01 MH094714
Pays : United States
Organisme : NIMH NIH HHS
ID : R21 MH103877
Pays : United States
Organisme : NIMH NIH HHS
ID : U01 MH103365
Pays : United States
Organisme : NIMH NIH HHS
ID : U01 MH103392
Pays : United States
Organisme : NIMH NIH HHS
ID : DP1 MH129957
Pays : United States
Organisme : NIMH NIH HHS
ID : U01 MH103346
Pays : United States
Organisme : NIMH NIH HHS
ID : U01 MH103340
Pays : United States
Organisme : NIMH NIH HHS
ID : U01 MH103339
Pays : United States
Organisme : NIDA NIH HHS
ID : U01 DA048279
Pays : United States
Organisme : NIMH NIH HHS
ID : P50 MH096890
Pays : United States
Organisme : NIMH NIH HHS
ID : R21 MH105881
Pays : United States
Organisme : NINDS NIH HHS
ID : R01 NS114226
Pays : United States
Organisme : NIMH NIH HHS
ID : P50 MH106934
Pays : United States
Organisme : NIMH NIH HHS
ID : R01 MH105472
Pays : United States
Organisme : NIMH NIH HHS
ID : R01 MH106056
Pays : United States
Organisme : Intramural NIH HHS
ID : ZIC MH002903
Pays : United States
Organisme : NIMH NIH HHS
ID : R21 MH102791
Pays : United States
Organisme : NIMH NIH HHS
ID : R01 MH105898
Pays : United States
Informations de copyright
© 2022. The Author(s), under exclusive licence to Springer Nature America, Inc.
Références
Dixon, J. R. et al. Chromatin architecture reorganization during stem cell differentiation. Nature 518, 331–336 (2015).
pubmed: 25693564
pmcid: 4515363
doi: 10.1038/nature14222
Girdhar, K. et al. Cell-specific histone modification maps in the human frontal lobe link schizophrenia risk to the neuronal epigenome. Nat. Neurosci. 21, 1126–1136 (2018).
pubmed: 30038276
pmcid: 6063773
doi: 10.1038/s41593-018-0187-0
Cheung, I. et al. Developmental regulation and individual differences of neuronal H3K4me3 epigenomes in the prefrontal cortex. Proc. Natl Acad. Sci. USA 107, 8824–8829 (2010).
pubmed: 20421462
pmcid: 2889328
doi: 10.1073/pnas.1001702107
Khan, A., Mathelier, A. & Zhang, X. Super-enhancers are transcriptionally more active and cell type-specific than stretch enhancers. Epigenetics 13, 910–922 (2018).
pubmed: 30169995
pmcid: 6284781
doi: 10.1080/15592294.2018.1514231
Network and Pathway Analysis Subgroup of Psychiatric Genomics Consortium. Psychiatric genome-wide association study analyses implicate neuronal, immune and histone pathways. Nat. Neurosci. 18, 199–209 (2015).
doi: 10.1038/nn.3922
Roussos, P. et al. A role for noncoding variation in schizophrenia. Cell Rep. 9, 1417–1429 (2014).
pubmed: 25453756
pmcid: 4255904
doi: 10.1016/j.celrep.2014.10.015
Takata, A. et al. Loss-of-function variants in schizophrenia risk and SETD1A as a candidate susceptibility gene. Neuron 82, 773–780 (2014).
pubmed: 24853937
pmcid: 4387883
doi: 10.1016/j.neuron.2014.04.043
Fullard, J. F. et al. An atlas of chromatin accessibility in the adult human brain. Genome Res. 28, 1243–1252 (2018).
pubmed: 29945882
pmcid: 6071637
doi: 10.1101/gr.232488.117
Hauberg, M. E. et al. Common schizophrenia risk variants are enriched in open chromatin regions of human glutamatergic neurons. Nat. Commun. 11, 5581 (2020).
pubmed: 33149216
pmcid: 7643171
doi: 10.1038/s41467-020-19319-2
Smigielski, L., Jagannath, V., Rössler, W., Walitza, S. & Grünblatt, E. Epigenetic mechanisms in schizophrenia and other psychotic disorders: a systematic review of empirical human findings. Mol. Psychiatry 25, 1718–1748 (2020).
pubmed: 31907379
doi: 10.1038/s41380-019-0601-3
Fromer, M. et al. Gene expression elucidates functional impact of polygenic risk for schizophrenia. Nat. Neurosci. 19, 1442–1453 (2016).
pubmed: 27668389
pmcid: 5083142
doi: 10.1038/nn.4399
Hoffman, G. E. et al. CommonMind Consortium provides transcriptomic and epigenomic data for schizophrenia and bipolar disorder. Sci. Data 6, 180 (2019).
pubmed: 31551426
pmcid: 6760149
doi: 10.1038/s41597-019-0183-6
Hauberg, M. E. et al. Differential activity of transcribed enhancers in the prefrontal cortex of 537 cases with schizophrenia and controls. Mol. Psychiatry 24, 1685–1695 (2019).
pubmed: 29740122
doi: 10.1038/s41380-018-0059-8
Kozlenkov, A. et al. A unique role for DNA (hydroxy)methylation in epigenetic regulation of human inhibitory neurons. Sci. Adv. 4, eaau6190 (2018).
pubmed: 30263963
pmcid: 6157969
doi: 10.1126/sciadv.aau6190
Wong, A. H. C. et al. Association between schizophrenia and the syntaxin 1A gene. Biol. Psychiatry 56, 24–29 (2004).
pubmed: 15219469
doi: 10.1016/j.biopsych.2004.03.008
Bryois, J. et al. Evaluation of chromatin accessibility in prefrontal cortex of individuals with schizophrenia. Nat. Commun. 9, 3121 (2018).
pubmed: 30087329
pmcid: 6081462
doi: 10.1038/s41467-018-05379-y
Finucane, H. K. et al. Partitioning heritability by functional annotation using genome-wide association summary statistics. Nat. Genet. 47, 1228–1235 (2015).
pubmed: 26414678
pmcid: 4626285
doi: 10.1038/ng.3404
Madani Tonekaboni, S. A., Mazrooei, P., Kofia, V., Haibe-Kains, B. & Lupien, M. Identifying clusters of cis-regulatory elements underpinning TAD structures and lineage-specific regulatory networks. Genome Res. 29, 1733–1743 (2019).
pubmed: 31533978
pmcid: 6771399
doi: 10.1101/gr.248658.119
Bendl, J. et al. The three-dimensional landscape of chromatin accessibility in Alzheimer’s disease. Preprint at https://www.biorxiv.org/content/10.1101/2021.01.11.426303v1 (2021).
Dong, P. et al. Population-level variation of enhancer expression identifies novel disease mechanisms in the human brain. Preprint at https://www.biorxiv.org/content/biorxiv/early/2021/06/11/2021.05.14.443421.full.pdf (2021).
Delaneau, O. et al. Chromatin three-dimensional interactions mediate genetic effects on gene expression. Science 364, eaat8266 (2019).
Waszak, S. M. et al. Population variation and genetic control of modular chromatin architecture in humans. Cell 162, 1039–1050 (2015).
pubmed: 26300124
doi: 10.1016/j.cell.2015.08.001
Hoffman, G. E., Bendl, J., Girdhar, K. & Roussos, P. decorate: differential epigenetic correlation test. Bioinformatics 36, 2856–2861 (2020).
pubmed: 32003784
pmcid: 7203736
doi: 10.1093/bioinformatics/btaa067
Ambroise, C., Dehman, A., Neuvial, P., Rigaill, G. & Vialaneix, N. Adjacency-constrained hierarchical clustering of a band similarity matrix with application to genomics. Algorithms Mol. Biol. 14, 22 (2019).
pubmed: 31807137
pmcid: 6857244
doi: 10.1186/s13015-019-0157-4
Beagan, J. A. & Phillips-Cremins, J. E. On the existence and functionality of topologically associating domains. Nat. Genet. 52, 8–16 (2020).
pubmed: 31925403
pmcid: 7567612
doi: 10.1038/s41588-019-0561-1
Nuebler, J., Fudenberg, G., Imakaev, M., Abdennur, N. & Mirny, L. A. Chromatin organization by an interplay of loop extrusion and compartmental segregation. Proc. Natl Acad. Sci. USA 115, E6697–E6706 (2018).
pubmed: 29967174
pmcid: 6055145
doi: 10.1073/pnas.1717730115
Kichaev, G. et al. Leveraging polygenic functional enrichment to improve GWAS power. Am. J. Hum. Genet. 104, 65–75 (2019).
pubmed: 30595370
doi: 10.1016/j.ajhg.2018.11.008
Dixon, J. R. et al. Topological domains in mammalian genomes identified by analysis of chromatin interactions. Nature 485, 376–380 (2012).
pubmed: 22495300
pmcid: 3356448
doi: 10.1038/nature11082
Lazar, N. H. et al. Epigenetic maintenance of topological domains in the highly rearranged gibbon genome. Genome Res. 28, 983–997 (2018).
pubmed: 29914971
pmcid: 6028127
doi: 10.1101/gr.233874.117
Hoffman, G. E. et al. Sex differences in the human brain transcriptome of cases with schizophrenia. Biol. Psychiatry 91, 92–101 (2022).
pubmed: 34154796
doi: 10.1016/j.biopsych.2021.03.020
Li, M. et al. Integrative functional genomic analysis of human brain development and neuropsychiatric risks. Science 362, eaat7615 (2018).
pubmed: 30545854
pmcid: 6413317
doi: 10.1126/science.aat7615
Paulsen, J. et al. Chrom3D: three-dimensional genome modeling from Hi-C and nuclear lamin-genome contacts. Genome Biol. 18, 21 (2017).
pubmed: 28137286
pmcid: 5278575
doi: 10.1186/s13059-016-1146-2
Paulsen, J., Liyakat Ali, T. M. & Collas, P. Computational 3D genome modeling using Chrom3D. Nat. Protoc. 13, 1137–1152 (2018).
pubmed: 29700484
doi: 10.1038/nprot.2018.009
Tseng, C.-E. J. et al. In vivo human brain expression of histone deacetylases in bipolar disorder. Transl. Psychiatry 10, 224 (2020).
pubmed: 32641695
pmcid: 7343804
doi: 10.1038/s41398-020-00911-5
Gilbert, T. M. et al. PET neuroimaging reveals histone deacetylase dysregulation in schizophrenia. J. Clin. Invest. 129, 364–372 (2019).
pubmed: 30530989
doi: 10.1172/JCI123743
Schroeder, F. A. et al. Expression of HDAC2 but not HDAC1 transcript is reduced in dorsolateral prefrontal cortex of patients with schizophrenia. ACS Chem. Neurosci. 8, 662–668 (2017).
pubmed: 27959513
doi: 10.1021/acschemneuro.6b00372
Bahari-Javan, S. et al. HDAC1 links early life stress to schizophrenia-like phenotypes. Proc. Natl Acad. Sci. USA 114, E4686–E4694 (2017).
pubmed: 28533418
pmcid: 5468618
doi: 10.1073/pnas.1613842114
Jakovcevski, M. et al. Prefrontal cortical dysfunction after overexpression of histone deacetylase 1. Biol. Psychiatry 74, 696–705 (2013).
pubmed: 23664640
pmcid: 3797203
doi: 10.1016/j.biopsych.2013.03.020
Schroeder, F. A., Lin, C. L., Crusio, W. E. & Akbarian, S. Antidepressant-like effects of the histone deacetylase inhibitor, sodium butyrate, in the mouse. Biol. Psychiatry 62, 55–64 (2007).
pubmed: 16945350
doi: 10.1016/j.biopsych.2006.06.036
de la Fuente Revenga, M. et al. HDAC2-dependent antipsychotic-like effects of chronic treatment with the HDAC inhibitor SAHA in mice. Neuroscience 388, 102–117 (2018).
pubmed: 30025863
doi: 10.1016/j.neuroscience.2018.07.010
Thomas, E. A. Histone posttranslational modifications in schizophrenia. Adv. Exp. Med. Biol. 978, 237–254 (2017).
pubmed: 28523550
doi: 10.1007/978-3-319-53889-1_13
Shulha, H. P., Cheung, I., Guo, Y., Akbarian, S. & Weng, Z. Coordinated cell type–specific epigenetic remodeling in prefrontal cortex begins before birth and continues into early adulthood. PLoS Genetics 9, e1003433 (2013).
pubmed: 23593028
pmcid: 3623761
doi: 10.1371/journal.pgen.1003433
Connor, C. M. et al. Maternal immune activation alters behavior in adult offspring, with subtle changes in the cortical transcriptome and epigenome. Schizophr. Res. 140, 175–184 (2012).
pubmed: 22804924
pmcid: 3568668
doi: 10.1016/j.schres.2012.06.037
Jaffe, A. E. et al. Mapping DNA methylation across development, genotype and schizophrenia in the human frontal cortex. Nat. Neurosci. 19, 40–47 (2016).
pubmed: 26619358
doi: 10.1038/nn.4181
Hannon, E. et al. Methylation QTLs in the developing brain and their enrichment in schizophrenia risk loci. Nat. Neurosci. 19, 48–54 (2016).
pubmed: 26619357
doi: 10.1038/nn.4182
Ruzicka, W. B. et al. Single-cell dissection of schizophrenia reveals neurodevelopmental-synaptic axis and transcriptional resilience. Preprint at https://www.medrxiv.org/content/10.1101/2020.11.06.20225342v1 (2020).
Dienel, S. J., Enwright, J. F., Hoftman, G. D. & Lewis, D. A. Markers of glutamate and GABA neurotransmission in the prefrontal cortex of schizophrenia subjects: disease effects differ across anatomical levels of resolution. Schizophr. Res. 217, 86–94 (2020).
pubmed: 31296415
doi: 10.1016/j.schres.2019.06.003
Bonev, B. et al. Multiscale 3D genome rewiring during mouse neural development. Cell 171, 557–572 (2017).
pubmed: 29053968
pmcid: 5651218
doi: 10.1016/j.cell.2017.09.043
Lomvardas, S. et al. Interchromosomal interactions and olfactory receptor choice. Cell 126, 403–413 (2006).
pubmed: 16873069
doi: 10.1016/j.cell.2006.06.035
Quinodoz, S. A. et al. Higher-order inter-chromosomal hubs shape 3D genome organization in the nucleus. Cell 174, 744–757 (2018).
pubmed: 29887377
pmcid: 6548320
doi: 10.1016/j.cell.2018.05.024
Khanna, N., Hu, Y. & Belmont, A. S. HSP70 transgene directed motion to nuclear speckles facilitates heat shock activation. Curr. Biol. 24, 1138–1144 (2014).
pubmed: 24794297
pmcid: 4030642
doi: 10.1016/j.cub.2014.03.053
Ahanger, S. H. et al. Distinct nuclear compartment-associated genome architecture in the developing mammalian brain. Nat. Neurosci. 24, 1235–1242 (2021).
pubmed: 34239128
pmcid: 8410652
doi: 10.1038/s41593-021-00879-5
Legge, S. E. et al. Associations between schizophrenia polygenic liability, symptom dimensions, and cognitive ability in schizophrenia. JAMA Psychiatry 8, 1143–1151 (2021).
Wang, D. et al. Comprehensive functional genomic resource and integrative model for the human brain. Science 362, eaat8464 (2018).
Kundakovic, M. et al. Practical guidelines for high-resolution epigenomic profiling of nucleosomal histones in postmortem human brain tissue. Biol. Psychiatry 81, 162–170 (2017).
pubmed: 27113501
doi: 10.1016/j.biopsych.2016.03.1048
Jiang, Y., Matevossian, A., Huang, H.-S., Straubhaar, J. & Akbarian, S. Isolation of neuronal chromatin from brain tissue. BMC Neurosci. 9, 42 (2008).
pubmed: 18442397
pmcid: 2377267
doi: 10.1186/1471-2202-9-42
Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30, 2114–2120 (2014).
pubmed: 24695404
pmcid: 4103590
doi: 10.1093/bioinformatics/btu170
Li, H. & Durbin, R. Fast and accurate short read alignment with Burrows–Wheeler transform. Bioinformatics 25, 1754–1760 (2009).
pubmed: 19451168
pmcid: 2705234
doi: 10.1093/bioinformatics/btp324
Landt, S. G. et al. ChIP-seq guidelines and practices of the ENCODE and modENCODE consortia. Genome Res. 22, 1813–1831 (2012).
pubmed: 22955991
pmcid: 3431496
doi: 10.1101/gr.136184.111
Fort, A. et al. MBV: a method to solve sample mislabeling and detect technical bias in large combined genotype and sequencing assay datasets. Bioinformatics 33, 1895–1897 (2017).
pubmed: 28186259
pmcid: 6044394
doi: 10.1093/bioinformatics/btx074
Zhang, Y. et al. Model-based Analysis of ChIP-Seq (MACS). Genome Biol. 9, R137 (2008).
pubmed: 18798982
pmcid: 2592715
doi: 10.1186/gb-2008-9-9-r137
Amemiya, H. M., Kundaje, A. & Boyle, A. P. The ENCODE blacklist: identification of problematic regions of the genome. Sci. Rep. 9, 9354 (2019).
pubmed: 31249361
pmcid: 6597582
doi: 10.1038/s41598-019-45839-z
Liao, Y., Smyth, G. K. & Shi, W. featureCounts: an efficient general purpose program for assigning sequence reads to genomic features. Bioinformatics 30, 923–930 (2014).
pubmed: 24227677
doi: 10.1093/bioinformatics/btt656
Robinson, M. D., McCarthy, D. J. & Smyth, G. K. edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 26, 139–140 (2010).
pubmed: 19910308
doi: 10.1093/bioinformatics/btp616
Hunt, G. J., Freytag, S., Bahlo, M. & Gagnon-Bartsch, J. A. dtangle: accurate and robust cell type deconvolution. Bioinformatics 35, 2093–2099 (2019).
pubmed: 30407492
doi: 10.1093/bioinformatics/bty926
Neath, A. A. & Cavanaugh, J. E. The Bayesian information criterion: background, derivation, and applications. WIREs Computational Statistics https://doi.org/10.1002/wics.199 (2011).
Yu, G., Wang, L.-G. & He, Q.-Y. ChIPseeker: an R/Bioconductor package for ChIP peak annotation, comparison and visualization. Bioinformatics 31, 2382–2383 (2015).
pubmed: 25765347
doi: 10.1093/bioinformatics/btv145
Ernst, J. & Kellis, M. Chromatin-state discovery and genome annotation with ChromHMM. Nat. Protoc. 12, 2478–2492 (2017).
pubmed: 29120462
pmcid: 5945550
doi: 10.1038/nprot.2017.124
Ritchie, M. E. et al. limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res. 43, e47 (2015).
pubmed: 25605792
pmcid: 4402510
doi: 10.1093/nar/gkv007
Viechtbauer, W. Conducting meta-analyses in R with the metafor package. J. Stat. Softw. 36, 1–48 (2010).
McLean, C. Y. et al. GREAT improves functional interpretation of cis-regulatory regions. Nat. Biotechnol. 28, 495–501 (2010).
pubmed: 20436461
pmcid: 4840234
doi: 10.1038/nbt.1630
de Leeuw, C. A., Mooij, J. M., Heskes, T. & Posthuma, D. MAGMA: generalized gene-set analysis of GWAS data. PLoS Comput. Biol. 11, e1004219 (2015).
pubmed: 25885710
pmcid: 4401657
doi: 10.1371/journal.pcbi.1004219
Stegle, O., Parts, L., Piipari, M., Winn, J. & Durbin, R. Using probabilistic estimation of expression residuals (PEER) to obtain increased power and interpretability of gene expression analyses. Nat. Protoc. 7, 500–507 (2012).
pubmed: 22343431
pmcid: 3398141
doi: 10.1038/nprot.2011.457
ENCODE Project Consortium. An integrated encyclopedia of DNA elements in the human genome. Nature 489, 57–74 (2012).
doi: 10.1038/nature11247
Kumar, V. et al. Uniform, optimal signal processing of mapped deep-sequencing data. Nat. Biotechnol. 31, 615–622 (2013).
pubmed: 23770639
doi: 10.1038/nbt.2596
Kozlenkov, A. et al. Substantial DNA methylation differences between two major neuronal subtypes in human brain. Nucleic Acids Res. 44, 2593–2612 (2016).
pubmed: 26612861
doi: 10.1093/nar/gkv1304
Van den Berge, K., Soneson, C., Robinson, M. D. & Clement, L. stageR: a general stage-wise method for controlling the gene-level false discovery rate in differential expression and differential transcript usage. Genome Biol. 18, 151 (2017).
pubmed: 28784146
pmcid: 5547545
doi: 10.1186/s13059-017-1277-0
Forgy, E. Cluster analysis of multivariate data: efficiency versus interpretability of classifications. Biometrics 21, 768–780 (1965).
Servant, N. et al. HiC-Pro: an optimized and flexible pipeline for Hi-C data processing. Genome Biol. 16, 259 (2015).
pubmed: 26619908
pmcid: 4665391
doi: 10.1186/s13059-015-0831-x
Ramírez, F. et al. High-resolution TADs reveal DNA sequences underlying genome organization in flies. Nat. Commun. 9, 189 (2018).
pubmed: 29335486
pmcid: 5768762
doi: 10.1038/s41467-017-02525-w
Abdennur, N. & Mirny, L. A. Cooler: scalable storage for Hi-C data and other genomically labeled arrays. Bioinformatics 36, 311–316 (2020).
pubmed: 31290943
doi: 10.1093/bioinformatics/btz540