Management of patients at very high risk of osteoporotic fractures through sequential treatments.


Journal

Aging clinical and experimental research
ISSN: 1720-8319
Titre abrégé: Aging Clin Exp Res
Pays: Germany
ID NLM: 101132995

Informations de publication

Date de publication:
Apr 2022
Historique:
received: 11 02 2022
accepted: 18 02 2022
pubmed: 26 3 2022
medline: 11 5 2022
entrez: 25 3 2022
Statut: ppublish

Résumé

Osteoporosis care has evolved markedly over the last 50 years, such that there are now an established clinical definition, validated methods of fracture risk assessment and a range of effective pharmacological agents. Currently, bone-forming (anabolic) agents, in many countries, are used in those patients who have continued to lose bone mineral density (BMD), patients with multiple subsequent fractures or those who have fractured despite treatment with antiresorptive agents. However, head-to-head data suggest that anabolic agents have greater rapidity and efficacy for fracture risk reduction than do antiresorptive therapies. The European Society for Clinical and Economic Aspects of Osteoporosis, Osteoarthritis and Musculoskeletal Diseases (ESCEO) convened an expert working group to discuss the tools available to identify patients at high risk of fracture, review the evidence for the use of anabolic agents as the initial intervention in patients at highest risk of fracture and consider the sequence of therapy following their use. This position paper sets out the findings of the group and the consequent recommendations. The key conclusion is that the current evidence base supports an "anabolic first" approach in patients found to be at very high risk of fracture, followed by maintenance therapy using an antiresorptive agent, and with the subsequent need for antiosteoporosis therapy addressed over a lifetime horizon.

Identifiants

pubmed: 35332506
doi: 10.1007/s40520-022-02100-4
pii: 10.1007/s40520-022-02100-4
pmc: PMC9076733
doi:

Substances chimiques

Anabolic Agents 0
Bone Density Conservation Agents 0

Types de publication

Journal Article Review

Langues

eng

Sous-ensembles de citation

IM

Pagination

695-714

Subventions

Organisme : Medical Research Council
ID : MC_PC_21022
Pays : United Kingdom

Informations de copyright

© 2022. The Author(s).

Références

Hernlund E, Svedbom A, Ivergard M et al (2013) Osteoporosis in the European Union: medical management, epidemiology and economic burden: a report prepared in collaboration with the International Osteoporosis Foundation (IOF) and the European Federation of Pharmaceutical Industry Associations (EFPIA). Arch Osteoporos 8:136
pubmed: 24113837 pmcid: 3880487 doi: 10.1007/s11657-013-0136-1
Cooper C, Cole ZA, Holroyd CR et al (2011) Secular trends in the incidence of hip and other osteoporotic fractures. Osteoporos Int 22:1277–1288
doi: 10.1007/s00198-011-1601-6
Harvey N, Dennison E, Cooper C (2010) Osteoporosis: impact on health and economics. Nat Rev Rheumatol 6:99–105
Kanis JA, Norton N, Harvey NC et al (2021) SCOPE 2021: a new scorecard for osteoporosis in Europe. Arch Osteoporos 16:82
pubmed: 34080059 pmcid: 8172408 doi: 10.1007/s11657-020-00871-9
Barnsley J, Buckland G, Chan PE et al (2021) Pathophysiology and treatment of osteoporosis: challenges for clinical practice in older people. Aging Clin Exp Res 33:759–773
pubmed: 33742387 pmcid: 8084810 doi: 10.1007/s40520-021-01817-y
Oden A, McCloskey EV, Kanis JA et al (2015) Burden of high fracture probability worldwide: secular increases 2010–2040. Osteoporos Int 26:2243–2248
pubmed: 26018089 doi: 10.1007/s00198-015-3154-6
Harvey NC, McCloskey E (2016) Gaps and solutions in bone health: a global framework for improvement. International Osteoporosis Foundation Thematic Report
McClung MR (2021) Role of bone-forming agents in the management of osteoporosis. Aging Clin Exp Res 33:775–791
pubmed: 33594648 doi: 10.1007/s40520-020-01708-8
Cummings SR, Cosman F, Lewiecki EM et al (2017) Goal-directed treatment for osteoporosis: a progress report from the ASBMR-NOF Working Group on Goal-Directed Treatment for Osteoporosis. J Bone Miner Res 32:3–10
pubmed: 27864889 doi: 10.1002/jbmr.3039
Kanis JA, Harvey NC, McCloskey E et al (2020) Algorithm for the management of patients at low, high and very high risk of osteoporotic fractures. Osteoporos Int 31:1–12
pubmed: 31720707 doi: 10.1007/s00198-019-05176-3
Kanis JA, Cooper C, Rizzoli R et al (2019) European guidance for the diagnosis and management of osteoporosis in postmenopausal women. Osteoporos Int 30:3–44
pubmed: 30324412 doi: 10.1007/s00198-018-4704-5
Kanis JA, Cooper C, Rizzoli R et al (2017) Identification and management of patients at increased risk of osteoporotic fracture: outcomes of an ESCEO expert consensus meeting. Osteoporos Int 28:2023–2034
pubmed: 28451733 pmcid: 5483332 doi: 10.1007/s00198-017-4009-0
Kendler DL, Marin F, Zerbini CAF et al (2018) Effects of teriparatide and risedronate on new fractures in post-menopausal women with severe osteoporosis (VERO): a multicentre, double-blind, double-dummy, randomised controlled trial. Lancet 391:230–240
pubmed: 29129436 doi: 10.1016/S0140-6736(17)32137-2
Saag KG, Petersen J, Brandi ML et al (2017) Romosozumab or alendronate for fracture prevention in women with osteoporosis. N Engl J Med 377:1417–1427
pubmed: 28892457 doi: 10.1056/NEJMoa1708322
Barrionuevo P, Kapoor E, Asi N et al (2019) Efficacy of pharmacological therapies for the prevention of fractures in postmenopausal women: a network meta-analysis. J Clin Endocrinol Metab 104:1623–1630
pubmed: 30907957 doi: 10.1210/jc.2019-00192
Díez-Pérez A, Marin F, Eriksen EF et al (2019) Effects of teriparatide on hip and upper limb fractures in patients with osteoporosis: a systematic review and meta-analysis. Bone 120:1–8
pubmed: 30268814 doi: 10.1016/j.bone.2018.09.020
McCloskey EV, Borgstrom F, Cooper C et al (2021) Short time horizons for fracture prediction tools: time for a rethink. Osteoporos Int 32:1019–1025
pubmed: 33914103 pmcid: 7611752 doi: 10.1007/s00198-021-05962-y
Javaid MK, Harvey NC, McCloskey EV (2022) Assessment and management of imminent fracture risk in the setting of the fracture liaison service. Osteoporos Int. doi: 10.1007/s00198-021-06284-9
Kanis JA, Johansson H, Odén A et al (2018) Characteristics of recurrent fractures. Osteoporos Int 29:1747–1757
pubmed: 29947869 pmcid: 6076437 doi: 10.1007/s00198-018-4502-0
Hippisley-Cox J, Coupland C (2009) Predicting risk of osteoporotic fracture in men and women in England and Wales: prospective derivation and validation of QFractureScores. BMJ 339:b4229
pubmed: 19926696 pmcid: 2779855 doi: 10.1136/bmj.b4229
Hippisley-Cox J, Coupland C (2012) Derivation and validation of updated QFracture algorithm to predict risk of osteoporotic fracture in primary care in the United Kingdom: prospective open cohort study. BMJ 344:e3427
pubmed: 22619194 doi: 10.1136/bmj.e3427
Nguyen ND, Frost SA, Center JR et al (2008) Development of prognostic nomograms for individualizing 5-year and 10-year fracture risks. Osteoporos Int 19:1431–1444
pubmed: 18324342 doi: 10.1007/s00198-008-0588-0
Kanis JA, Oden A, McCloskey EV et al (2012) A systematic review of hip fracture incidence and probability of fracture worldwide. Osteoporos Int 23:2239–2256
pubmed: 22419370 pmcid: 3421108 doi: 10.1007/s00198-012-1964-3
Khalid S, Reyes C, Ernst M et al (2021) One- and 2-year incidence of osteoporotic fracture: a multi-cohort observational study using routinely collected real-world data. Osteoporos Int. https://doi.org/10.1007/s00198-021-06077-0
doi: 10.1007/s00198-021-06077-0 pubmed: 34392386 pmcid: 8758600
Khalid S, Pineda-Moncusí M, El-Hussein L et al (2021) Predicting imminent fractures in patients with a recent fracture or starting oral bisphosphonate therapy: development and International Validation of Prognostic Models. J Bone Miner Res 36:2162–2176
pubmed: 34342378 doi: 10.1002/jbmr.4414
van Geel TA, van Helden S, Geusens PP et al (2009) Clinical subsequent fractures cluster in time after first fractures. Ann Rheum Dis 68:99–102
pubmed: 18677009 doi: 10.1136/ard.2008.092775
Toth E, Banefelt J, Åkesson K et al (2020) History of previous fracture and imminent fracture risk in Swedish women aged 55 to 90 years presenting with a fragility fracture. J Bone Miner Res 35:861–868
pubmed: 31914206 doi: 10.1002/jbmr.3953
Hadji P, Schweikert B, Kloppmann E et al (2021) Osteoporotic fractures and subsequent fractures: imminent fracture risk from an analysis of German real-world claims data. Arch Gynecol Obstet 304:703–712
pubmed: 34247254 pmcid: 8325652 doi: 10.1007/s00404-021-06123-6
Almog YA, Rai A, Zhang P et al (2020) Deep learning with electronic health records for short-term fracture risk identification: crystal bone algorithm development and validation. J Med Internet Res 22:22550
doi: 10.2196/22550
Rubin KH, Möller S, Holmberg T et al (2018) A new fracture risk assessment tool (FREM) based on public health registries. J Bone Miner Res 33:1967–1979
pubmed: 29924428 doi: 10.1002/jbmr.3528
Skjødt MK, Möller S, Hyldig N et al (2021) Validation of the fracture risk evaluation model (FREM) in predicting major osteoporotic fractures and hip fractures using administrative health data. Bone 147:115934
pubmed: 33757901 doi: 10.1016/j.bone.2021.115934
Möller S, Skjødt MK, Yan L et al (2022) Prediction of imminent fracture risk in Canadian women and men aged 45 years or older: external validation of the Fracture Risk Evaluation Model (FREM). Osteoporos Int 33:57–66
pubmed: 34596704 doi: 10.1007/s00198-021-06165-1
Shoback D, Rosen CJ, Black DM et al (2020) Pharmacological management of osteoporosis in postmenopausal women: an endocrine society guideline update. J Clin Endocrinol Metab 105:587
doi: 10.1210/clinem/dgaa048
(SIGN) SIGN (2021) Management of osteoporosis and teh prevention of fragility fractures. SIGN, Edinburgh
Kanis JA, Johansson H, Harvey NC et al (2021) An assessment of intervention thresholds for very high fracture risk applied to the NOGG guidelines : a report for the National Osteoporosis Guideline Group (NOGG). Osteoporos Int 32:1951–1960
pubmed: 33813622 doi: 10.1007/s00198-021-05942-2
Ferrari S, Lippuner K, Lamy O et al (2020) 2020 recommendations for osteoporosis treatment according to fracture risk from the Swiss Association against Osteoporosis (SVGO). Swiss Med Wkly 150:w20352
pubmed: 33038260
Cooper CJM, Elliott M, Stephens D et al. (2020) UK consensus guideline on the management of patients at low, high, and very high risk of osteoporotic fracture www.guidelines.co.uk . MGP Guidelines
Kanis JA (2007) Assessment of osteoporosis at the primary health care level. World Health Organization, Geneva
Kanis JA, Johansson H, Harvey NC et al (2018) A brief history of FRAX. Arch Osteoporos 13:118
pubmed: 30382424 pmcid: 6290984 doi: 10.1007/s11657-018-0510-0
Kanis JA, Johansson H, Oden A et al (2014) Worldwide uptake of FRAX. Arch Osteoporos 9:166
pubmed: 24420978 doi: 10.1007/s11657-013-0166-8
Kanis JA, Harvey NC, Cooper C et al (2016) A systematic review of intervention thresholds based on FRAX: a report prepared for the National Osteoporosis Guideline Group and the International Osteoporosis Foundation. Arch Osteoporos 11:25
pubmed: 27465509 pmcid: 4978487 doi: 10.1007/s11657-016-0278-z
Kanis JA, Harvey NC, Johansson H et al (2020) A decade of FRAX: how has it changed the management of osteoporosis? Aging Clin Exp Res 32:187–196
pubmed: 32043227 doi: 10.1007/s40520-019-01432-y
Lorentzon M, Branco J, Brandi ML et al (2019) Algorithm for the use of biochemical markers of bone turnover in the diagnosis, assessment and follow-up of treatment for osteoporosis. Adv Ther. https://doi.org/10.1007/s12325-019-01063-9
doi: 10.1007/s12325-019-01063-9 pubmed: 31440982 pmcid: 6822833
McCloskey E, Kanis JA, Johansson H et al (2015) FRAX-based assessment and intervention thresholds—an exploration of thresholds in women aged 50 years and older in the UK. Osteoporos Int 26:2091–2099
pubmed: 26077380 doi: 10.1007/s00198-015-3176-0
Johansson H, Siggeirsdóttir K, Harvey NC et al (2017) Imminent risk of fracture after fracture. Osteoporos Int 28:775–780
pubmed: 28028554 doi: 10.1007/s00198-016-3868-0
Johnell O, Kanis JA, Oden A et al (2004) Fracture risk following an osteoporotic fracture. Osteoporos Int 15:175–179
pubmed: 14691617 doi: 10.1007/s00198-003-1514-0
Ahmed LA, Center JR, Bjørnerem Å et al (2013) Progressively increasing fracture risk with advancing age after initial incident fragility fracture: the Tromsø study. J Bone Miner Res 28:2214–2221
pubmed: 23572401 doi: 10.1002/jbmr.1952
Kanis JA, Johansson H, Harvey NC et al (2020) Adjusting conventional FRAX estimates of fracture probability according to the recency of sentinel fractures. Osteoporos Int 31:1817–1828
pubmed: 32613411 pmcid: 7116089 doi: 10.1007/s00198-020-05517-7
Kanis JA, Johansson H, Harvey NC et al (2021) The use of 2-, 5-, and 10-year probabilities to characterize fracture risk after a recent sentinel fracture. Osteoporos Int 32:47–54
pubmed: 33083910 doi: 10.1007/s00198-020-05700-w
Leder BZ, Tsai JN, Neer RM et al (2016) Response to therapy with teriparatide, denosumab, or both in postmenopausal women in the DATA (Denosumab and Teriparatide Administration) Study Randomized Controlled Trial. J Clin Densitom 19:346–351
pubmed: 26900146 doi: 10.1016/j.jocd.2016.01.004
Bone HG, Cosman F, Miller PD et al (2018) ACTIVExtend: 24 months of alendronate after 18 months of abaloparatide or placebo for postmenopausal osteoporosis. J Clin Endocrinol Metab 103:2949–2957
pubmed: 29800372 pmcid: 6097601 doi: 10.1210/jc.2018-00163
Cosman F, Nieves JW, Dempster DW (2017) Treatment sequence matters: anabolic and antiresorptive therapy for osteoporosis. J Bone Miner Res 32:198–202
pubmed: 27925287 doi: 10.1002/jbmr.3051
Kanis JA, Cooper C, Rizzoli R et al (2018) Review of the guideline of the American College of Physicians on the treatment of osteoporosis. Osteoporos Int 29:1505–1510
pubmed: 29869039 pmcid: 6037298 doi: 10.1007/s00198-018-4504-y
Canalis E, Giustina A, Bilezikian JP (2007) Mechanisms of anabolic therapies for osteoporosis. N Engl J Med 357:905–916
pubmed: 17761594 doi: 10.1056/NEJMra067395
Neer RM, Arnaud CD, Zanchetta JR et al (2001) Effect of parathyroid hormone (1–34) on fractures and bone mineral density in postmenopausal women with osteoporosis. N Engl J Med 344:1434–1441
pubmed: 11346808 doi: 10.1056/NEJM200105103441904
Prince R, Sipos A, Hossain A et al (2005) Sustained nonvertebral fragility fracture risk reduction after discontinuation of teriparatide treatment. J Bone Miner Res 20:1507–1513
pubmed: 16059622 doi: 10.1359/JBMR.050501
Lindsay R, Scheele WH, Neer R et al (2004) Sustained vertebral fracture risk reduction after withdrawal of teriparatide in postmenopausal women with osteoporosis. Arch Intern Med 164:2024–2030
pubmed: 15477438 doi: 10.1001/archinte.164.18.2024
Kaufman JM, Orwoll E, Goemaere S et al (2005) Teriparatide effects on vertebral fractures and bone mineral density in men with osteoporosis: treatment and discontinuation of therapy. Osteoporos Int 16:510–516
pubmed: 15322742 doi: 10.1007/s00198-004-1713-3
Eastell R, Nickelsen T, Marin F et al (2009) Sequential treatment of severe postmenopausal osteoporosis after teriparatide: final results of the randomized, controlled European Study of Forsteo (EUROFORS). J Bone Miner Res 24:726–736
pubmed: 19049337 doi: 10.1359/jbmr.081215
Kaufman JM (2021) Management of osteoporosis in older men. Aging Clin Exp Res 33:1439–1452
pubmed: 33821467 doi: 10.1007/s40520-021-01845-8
Finkelstein JS, Hayes A, Hunzelman JL et al (2003) The effects of parathyroid hormone, alendronate, or both in men with osteoporosis. N Engl J Med 349:1216–1226
pubmed: 14500805 doi: 10.1056/NEJMoa035725
Finkelstein JS, Wyland JJ, Lee H et al (2010) Effects of teriparatide, alendronate, or both in women with postmenopausal osteoporosis. J Clin Endocrinol Metab 95:1838–1845
pubmed: 20164296 pmcid: 2853981 doi: 10.1210/jc.2009-1703
Cosman F, Eriksen EF, Recknor C et al (2011) Effects of intravenous zoledronic acid plus subcutaneous teriparatide [rhPTH(1–34)] in postmenopausal osteoporosis. J Bone Miner Res 26:503–511
pubmed: 20814967 doi: 10.1002/jbmr.238
Tsai JN, Uihlein AV, Lee H et al (2013) Teriparatide and denosumab, alone or combined, in women with postmenopausal osteoporosis: the DATA study randomised trial. Lancet 382:50–56
pubmed: 23683600 pmcid: 4083737 doi: 10.1016/S0140-6736(13)60856-9
Leder BZ, Tsai JN, Uihlein AV et al (2015) Denosumab and teriparatide transitions in postmenopausal osteoporosis (the DATA-Switch study): extension of a randomised controlled trial. Lancet 386:1147–1155
pubmed: 26144908 pmcid: 4620731 doi: 10.1016/S0140-6736(15)61120-5
Hattersley G, Dean T, Corbin BA et al (2016) Binding selectivity of abaloparatide for PTH-Type-1-receptor conformations and effects on downstream signaling. Endocrinology 157:141–149
pubmed: 26562265 doi: 10.1210/en.2015-1726
Miller PD, Hattersley G, Riis BJ et al (2016) Effect of abaloparatide vs placebo on new vertebral fractures in postmenopausal women with osteoporosis: a randomized clinical trial. JAMA 316:722–733
pubmed: 27533157 doi: 10.1001/jama.2016.11136
Cosman F, Miller PD, Williams GC et al (2017) Eighteen months of treatment with subcutaneous abaloparatide followed by 6 months of treatment with alendronate in postmenopausal women with osteoporosis: results of the ACTIVExtend Trial. Mayo Clin Proc 92:200–210
pubmed: 28160873 doi: 10.1016/j.mayocp.2016.10.009
Reginster J-Y, Hattersley G, Williams GC et al (2018) Abaloparatide is an effective treatment option for postmenopausal osteoporosis: review of the number needed to treat compared with teriparatide. Calcif Tissue Int 103:540–545
pubmed: 29951742 pmcid: 6182596 doi: 10.1007/s00223-018-0450-0
Estell EG, Rosen CJ (2021) Emerging insights into the comparative effectiveness of anabolic therapies for osteoporosis. Nat Rev Endocrinol 17:31–46
pubmed: 33149262 doi: 10.1038/s41574-020-00426-5
McClung MR, Grauer A, Boonen S et al (2014) Romosozumab in postmenopausal women with low bone mineral density. N Engl J Med 370:412–420
pubmed: 24382002 doi: 10.1056/NEJMoa1305224
Padhi D, Jang G, Stouch B et al (2011) Single-dose, placebo-controlled, randomized study of AMG 785, a sclerostin monoclonal antibody. J Bone Miner Res 26:19–26
pubmed: 20593411 doi: 10.1002/jbmr.173
Cosman F, Crittenden DB, Adachi JD et al (2016) Romosozumab treatment in postmenopausal women with osteoporosis. N Engl J Med 375:1532–1543
pubmed: 27641143 doi: 10.1056/NEJMoa1607948
Cosman F, Crittenden DB, Ferrari S et al (2018) Romosozumab FRAME study: a post hoc analysis of the role of regional background fracture risk on nonvertebral fracture outcome. J Bone Miner Res 33:1407–1416
pubmed: 29750828 doi: 10.1002/jbmr.3439
McCloskey EV, Johansson H, Harvey NC et al (2021) Romosozumab efficacy on fracture outcomes is greater in patients at high baseline fracture risk: a post hoc analysis of the first year of the frame study. Osteoporos Int 32:1601–1608
pubmed: 33537844 pmcid: 8376732 doi: 10.1007/s00198-020-05815-0
Lewiecki EM, Dinavahi RV, Lazaretti-Castro M et al (2019) One year of romosozumab followed by two years of denosumab maintains fracture risk reductions: results of the FRAME Extension Study. J Bone Miner Res 34:419–428
pubmed: 30508316 doi: 10.1002/jbmr.3622
Cosman F, Crittenden DB, Ferrari S et al (2018) FRAME study: the foundation effect of building bone with 1 year of romosozumab leads to continued lower fracture risk after transition to denosumab. J Bone Miner Res 33:1219–1226
pubmed: 29573473 doi: 10.1002/jbmr.3427
Bone HG, Wagman RB, Brandi ML et al (2017) 10 years of denosumab treatment in postmenopausal women with osteoporosis: results from the phase 3 randomised FREEDOM trial and open-label extension. Lancet Diabetes Endocrinol 5:513–523
pubmed: 28546097 doi: 10.1016/S2213-8587(17)30138-9
McClung MR, Brown JP, Diez-Perez A et al (2018) Effects of 24 months of treatment with romosozumab followed by 12 months of denosumab or placebo in postmenopausal women with low bone mineral density: a Randomized, Double-Blind, Phase 2, Parallel Group Study. J Bone Miner Res 33:1397–1406
pubmed: 29694685 doi: 10.1002/jbmr.3452
McClung MR, Bolognese MA, Brown JP et al (2020) A single dose of zoledronate preserves bone mineral density for up to 2 years after a second course of romosozumab. Osteoporos Int 31:2231–2241
pubmed: 32623487 pmcid: 7560921 doi: 10.1007/s00198-020-05502-0
Harvey NC, Kanis JA, Odén A et al (2015) Efficacy of weekly teriparatide does not vary by baseline fracture probability calculated using FRAX. Osteoporos Int 26:2347–2353
pubmed: 26092062 pmcid: 4532707 doi: 10.1007/s00198-015-3129-7
Harvey NC, Kanis JA, Odén A et al (2015) FRAX and the effect of teriparatide on vertebral and non-vertebral fracture. Osteoporos Int 26:2677–2684
pubmed: 26092063 pmcid: 4913866 doi: 10.1007/s00198-015-3173-3
Fuggle NR, Cooper C, Harvey NC et al (2020) Assessment of cardiovascular safety of anti-osteoporosis drugs. Drugs 80:1537–1552
pubmed: 32725307 pmcid: 7536167 doi: 10.1007/s40265-020-01364-2
Langdahl BL, Libanati C, Crittenden DB et al (2017) Romosozumab (sclerostin monoclonal antibody) versus teriparatide in postmenopausal women with osteoporosis transitioning from oral bisphosphonate therapy: a randomised, open-label, phase 3 trial. Lancet 390:1585–1594
pubmed: 28755782 doi: 10.1016/S0140-6736(17)31613-6
Compston J, Cooper A, Cooper C et al (2017) UK clinical guideline for the prevention and treatment of osteoporosis. Arch Osteoporos 12:43
pubmed: 28425085 pmcid: 5397452 doi: 10.1007/s11657-017-0324-5
Harvey NC, McCloskey E, Kanis JA et al (2018) Cost-effective but clinically inappropriate: new NICE intervention thresholds in osteoporosis (Technology Appraisal 464). Osteoporos Int 29:1511–1513
pubmed: 29947864 pmcid: 6037288 doi: 10.1007/s00198-018-4505-x
Vahle JL, Sato M, Long GG et al (2002) Skeletal changes in rats given daily subcutaneous injections of recombinant human parathyroid hormone (1–34) for 2 years and relevance to human safety. Toxicol Pathol 30:312–321
pubmed: 12051548 doi: 10.1080/01926230252929882
Gilsenan A, Midkiff K, Harris D et al (2021) Teriparatide Did Not Increase Adult Osteosarcoma Incidence in a 15-Year US Postmarketing Surveillance Study. J Bone Miner Res 36:244–251
pubmed: 32990990 doi: 10.1002/jbmr.4188
Ma YL, Zeng QQ, Chiang AY et al (2014) Effects of teriparatide on cortical histomorphometric variables in postmenopausal women with or without prior alendronate treatment. Bone 59:139–147
pubmed: 24269280 doi: 10.1016/j.bone.2013.11.011
Dempster DW, Roschger P, Misof BM et al (2016) Differential effects of teriparatide and zoledronic acid on bone mineralization density distribution at 6 and 24 months in the SHOTZ Study. J Bone Miner Res 31:1527–1535
pubmed: 26931279 doi: 10.1002/jbmr.2825
Lindsay R, Miller P, Pohl G et al (2009) Relationship between duration of teriparatide therapy and clinical outcomes in postmenopausal women with osteoporosis. Osteoporos Int 20:943–948
pubmed: 18923884 doi: 10.1007/s00198-008-0766-0
Saag KG, Zanchetta JR, Devogelaer JP et al (2009) Effects of teriparatide versus alendronate for treating glucocorticoid-induced osteoporosis: thirty-six-month results of a randomized, double-blind, controlled trial. Arthritis Rheum 60:3346–3355
pubmed: 19877063 doi: 10.1002/art.24879
Gatti D, Viapiana O, Idolazzi L et al (2011) The waning of teriparatide effect on bone formation markers in postmenopausal osteoporosis is associated with increasing serum levels of DKK1. J Clin Endocrinol Metab 96:1555–1559
pubmed: 21367927 doi: 10.1210/jc.2010-2552
Eastell R, Mitlak BH, Wang Y et al (2019) Bone turnover markers to explain changes in lumbar spine BMD with abaloparatide and teriparatide: results from ACTIVE. Osteoporos Int 30:667–673
pubmed: 30635696 pmcid: 6422956 doi: 10.1007/s00198-018-04819-1
Ross PD, Knowlton W (1998) Rapid bone loss is associated with increased levels of biochemical markers. J Bone Miner Res 13:297–302
pubmed: 9495524 doi: 10.1359/jbmr.1998.13.2.297
Johansson H, Odén A, Kanis JA et al (2014) A meta-analysis of reference markers of bone turnover for prediction of fracture. Calcif Tissue Int 94:560–567
pubmed: 24590144 doi: 10.1007/s00223-014-9842-y
Ivaska KK, Gerdhem P, Akesson K et al (2007) Effect of fracture on bone turnover markers: a longitudinal study comparing marker levels before and after injury in 113 elderly women. J Bone Miner Res 22:1155–1164
pubmed: 17488197 doi: 10.1359/jbmr.070505
Ingle BM, Hay SM, Bottjer HM et al (1999) Changes in bone mass and bone turnover following distal forearm fracture. Osteoporos Int 10:399–407
pubmed: 10591838 doi: 10.1007/s001980050246
Garnero P, Hausherr E, Chapuy MC et al (1996) Markers of bone resorption predict hip fracture in elderly women: the EPIDOS Prospective Study. J Bone Miner Res 11:1531–1538
pubmed: 8889854 doi: 10.1002/jbmr.5650111021
Mun H, Liu B, Pham THA et al (2021) C-reactive protein and fracture risk: an updated systematic review and meta-analysis of cohort studies through the use of both frequentist and Bayesian approaches. Osteoporos Int 32:425–435
pubmed: 32935169 doi: 10.1007/s00198-020-05623-6
Yin P, Lv H, Li Y et al (2017) The association between serum uric acid level and the risk of fractures: a systematic review and meta-analysis. Osteoporos Int 28:2299–2307
pubmed: 28488134 doi: 10.1007/s00198-017-4059-3
Ensrud KE, Parimi N, Cauley JA et al (2013) Cystatin C and risk of hip fractures in older women. J Bone Miner Res 28:1275–1282
pubmed: 23300153 doi: 10.1002/jbmr.1858
Garnero P (2017) The utility of biomarkers in osteoporosis management. Mol Diagn Ther 21:401–418
pubmed: 28271451 doi: 10.1007/s40291-017-0272-1
Lee SH, Lee JY, Lim KH et al (2020) High circulating sphingosine 1-phosphate is a risk factor for osteoporotic fracture independent of fracture risk assessment tool. Calcif Tissue Int 107:362–370
pubmed: 32719936 doi: 10.1007/s00223-020-00731-1
Fontalis A, Eastell R (2020) The challenge of long-term adherence: The role of bone turnover markers in monitoring bisphosphonate treatment of osteoporosis. Bone 136:115336
pubmed: 32234415 doi: 10.1016/j.bone.2020.115336
Cosman F, Nieves JW, Zion M et al (2015) Daily or cyclical teriparatide treatment in women with osteoporosis on no prior therapy and women on alendronate. J Clin Endocrinol Metab 100:2769–2776
pubmed: 25961136 pmcid: 5393523 doi: 10.1210/jc.2015-1715
Cosman F, McMahon D, Dempster D et al (2020) Standard versus cyclic teriparatide and denosumab treatment for osteoporosis: a randomized trial. J Bone Miner Res 35:219–225
pubmed: 31419313 doi: 10.1002/jbmr.3850
Elbers LPB, Raterman HG, Lems WF (2021) Bone mineral density loss and fracture risk after discontinuation of anti-osteoporotic drug treatment: a narrative review. Drugs 81:1645–1655
pubmed: 34524681 pmcid: 8519894 doi: 10.1007/s40265-021-01587-x
Anastasilakis AD, Papapoulos SE, Polyzos SA (2019) Zoledronate for the prevention of bone loss in women discontinuing denosumab treatment. A prospective 2-year clinical trial. J Bone Miner Res 34:2220–2228
pubmed: 31433518 doi: 10.1002/jbmr.3853
Ramchand SK, David NL, Lee H et al (2021) Efficacy of zoledronic acid in maintaining areal and volumetric bone density after combined denosumab and teriparatide administration: DATA-HD study extension. J Bone Miner Res 36:921–930
pubmed: 33507574 doi: 10.1002/jbmr.4259
Zanchetta MB, Boailchuk J, Massari F et al (2018) Significant bone loss after stopping long-term denosumab treatment: a post FREEDOM study. Osteoporos Int 29:41–47
pubmed: 28975362 doi: 10.1007/s00198-017-4242-6
Popp AW, Varathan N, Buffat H et al (2018) Bone mineral density changes after 1 year of denosumab discontinuation in postmenopausal women with long-term denosumab treatment for osteoporosis. Calcif Tissue Int 103:50–54
pubmed: 29380013 doi: 10.1007/s00223-018-0394-4
Anastasilakis AD, Makras P, Yavropoulou MP et al (2021) Denosumab discontinuation and the rebound phenomenon: a narrative review. J Clin Med 10:152
pmcid: 7796169 doi: 10.3390/jcm10010152
Burckhardt P, Faouzi M, Buclin T et al (2021) Fractures after denosumab discontinuation: a retrospective study of 797 cases. J Bone Miner Res 36:1717–1728
pubmed: 34009703 doi: 10.1002/jbmr.4335
Fatoye F, Smith P, Gebrye T et al (2019) Real-world persistence and adherence with oral bisphosphonates for osteoporosis: a systematic review. BMJ Open 9:e027049
pubmed: 30987990 pmcid: 6500256 doi: 10.1136/bmjopen-2018-027049
Ross S, Samuels E, Gairy K et al (2011) A meta-analysis of osteoporotic fracture risk with medication nonadherence. Value Health 14:571–581
pubmed: 21669382 doi: 10.1016/j.jval.2010.11.010
Hiligsmann M, McGowan B, Bennett K et al (2012) The clinical and economic burden of poor adherence and persistence with osteoporosis medications in Ireland. Value Health 15:604–612
pubmed: 22867768 doi: 10.1016/j.jval.2012.02.001
Koller G, Goetz V, Vandermeer B et al (2020) Persistence and adherence to parenteral osteoporosis therapies: a systematic review. Osteoporos Int 31:2093–2102
pubmed: 32613409 doi: 10.1007/s00198-020-05507-9
Yeam CT, Chia S, Tan HCC et al (2018) A systematic review of factors affecting medication adherence among patients with osteoporosis. Osteoporos Int 29:2623–2637
pubmed: 30417253 doi: 10.1007/s00198-018-4759-3
Hiligsmann M, Cornelissen D, Vrijens B et al (2019) Determinants, consequences and potential solutions to poor adherence to anti-osteoporosis treatment: results of an expert group meeting organized by the European Society for Clinical and Economic Aspects of Osteoporosis, Osteoarthritis and Musculoskeletal Diseases (ESCEO) and the International Osteoporosis Foundation (IOF). Osteoporos Int 30:2155–2165
pubmed: 31388696 pmcid: 6811382 doi: 10.1007/s00198-019-05104-5
Barrionuevo P, Gionfriddo MR, Castaneda-Guarderas A et al (2019) Women’s values and preferences regarding osteoporosis treatments: a systematic review. J Clin Endocrinol Metab 104:1631–1636
pubmed: 30907968 pmcid: 7296202 doi: 10.1210/jc.2019-00193
Cornelissen D, de Kunder S, Si L et al (2020) Interventions to improve adherence to anti-osteoporosis medications: an updated systematic review. Osteoporos Int 31:1645–1669
pubmed: 32358684 pmcid: 7423788 doi: 10.1007/s00198-020-05378-0
Cornelissen D, Boonen A, Bours S et al (2020) Understanding patients’ preferences for osteoporosis treatment: the impact of patients’ characteristics on subgroups and latent classes. Osteoporos Int 31:85–96
pubmed: 31606825 doi: 10.1007/s00198-019-05154-9
Hiligsmann M, Dellaert BG, Dirksen CD et al (2017) Patients’ preferences for anti-osteoporosis drug treatment: a cross-European discrete choice experiment. Rheumatology 56:1167–1176
pubmed: 28398547 doi: 10.1093/rheumatology/kex071
Hiligsmann M, Dellaert BG, Dirksen CD et al (2014) Patients’ preferences for osteoporosis drug treatment: a discrete-choice experiment. Arthritis Res Ther 16:R36
pubmed: 24479410 pmcid: 3979104 doi: 10.1186/ar4465
Sato M, Tsujimoto M, Kajimoto K et al (2018) Effect of a patient-support program on once-daily teriparatide adherence and persistence in the Japan Fracture Observational Study (JFOS). Arch Osteoporos 13:74
pubmed: 29978364 pmcid: 6310708 doi: 10.1007/s11657-018-0487-8
Li N, Cornelissen D, Silverman S et al (2021) An updated systematic review of cost-effectiveness analyses of drugs for osteoporosis. Pharmacoeconomics 39:181–209
pubmed: 33026634 doi: 10.1007/s40273-020-00965-9
Hiligsmann M, Reginster JY, Tosteson ANA et al (2019) Recommendations for the conduct of economic evaluations in osteoporosis: outcomes of an experts’ consensus meeting organized by the European Society for Clinical and Economic Aspects of Osteoporosis, Osteoarthritis and Musculoskeletal Diseases (ESCEO) and the US branch of the International Osteoporosis Foundation. Osteoporos Int 30:45–57
pubmed: 30382319 doi: 10.1007/s00198-018-4744-x
Le QA, Hay JW, Becker R et al (2019) Cost-effectiveness analysis of sequential treatment of abaloparatide followed by alendronate versus teriparatide followed by alendronate in postmenopausal women with osteoporosis in the United States. Ann Pharmacother 53:134–143
pubmed: 30160186 doi: 10.1177/1060028018798034
Mori T, Crandall CJ, Ganz DA (2019) Cost-effectiveness of sequential teriparatide/alendronate versus alendronate-alone strategies in high-risk osteoporotic women in the US: analyzing the impact of generic/biosimilar teriparatide. JBMR Plus 3:10233
doi: 10.1002/jbm4.10233
Hiligsmann M, Williams SA, Fitzpatrick LA (2019) Cost-effectiveness of sequential treatment with abaloparatide vs. teriparatide for United States women at increased risk of fracture. Semin Arthritis Rheum 49:184–196
pubmed: 30737062 doi: 10.1016/j.semarthrit.2019.01.006
Hiligsmann M, Williams SA, Fitzpatrick LA (2020) Cost-effectiveness of sequential treatment with abaloparatide followed by alendronate vs. alendronate monotherapy in women at increased risk of fracture: a US payer perspective. Semin Arthritis Rheum 50:394–400
pubmed: 32160943 doi: 10.1016/j.semarthrit.2020.02.004
Söreskog E, Borgström F, Lindberg I et al (2021) A novel economic framework to assess the cost-effectiveness of bone-forming agents in the prevention of fractures in patients with osteoporosis. Osteoporos Int 32:1301–1311
pubmed: 33411005 pmcid: 8192365 doi: 10.1007/s00198-020-05765-7
Söreskog E, Lindberg I, Kanis JA et al (2021) Cost-effectiveness of romosozumab for the treatment of postmenopausal women with severe osteoporosis at high risk of fracture in Sweden. Osteoporos Int 32:585–594
pubmed: 33409591 pmcid: 7929944 doi: 10.1007/s00198-020-05780-8
Mori T, Crandall CJ, Fujii T et al (2021) Cost-effectiveness of sequential daily teriparatide/weekly alendronate compared with alendronate monotherapy for older osteoporotic women with prior vertebral fracture in Japan. Arch Osteoporos 16:72
pubmed: 33866457 pmcid: 8053143 doi: 10.1007/s11657-021-00891-z
Mori T, Crandall CJ, Fujii T et al (2021) Cost-effectiveness of zoledronic acid compared with sequential denosumab/alendronate for older osteoporotic women in Japan. Arch Osteoporos 16:113
pubmed: 34264429 pmcid: 8282566 doi: 10.1007/s11657-021-00956-z

Auteurs

Elizabeth M Curtis (EM)

MRC Lifecourse Epidemiology Centre, University of Southampton, Southampton, UK.

Jean-Yves Reginster (JY)

WHO Collaborating Centre for Public Health Aspects of Musculoskeletal Health and Aging, Liège, Belgium.
Department of Public Health, Epidemiology and Health Economics, University of Liège, CHU Sart Tilman B23, 4000, Liège, Belgium.

Nasser Al-Daghri (N)

Biochemistry Department, College of Science, King Saud University, 11451, Riyadh, Kingdom of Saudi Arabia.

Emmanuel Biver (E)

Division of Bone Diseases, Department of Medicine, Faculty of Medicine, Geneva University Hospitals, University of Geneva, Geneva, Switzerland.

Maria Luisa Brandi (ML)

F.I.R.M.O, Italian Foundation for the Research on Bone Diseases, Florence, Italy.

Etienne Cavalier (E)

Department of Clinical Chemistry, University of Liege, CHU de Liège, Liège, Belgium.

Peyman Hadji (P)

Center of Bone Health, Frankfurt, Germany.
Philipps-University of Marburg, Marburg, Germany.

Philippe Halbout (P)

International Osteoporosis Foundation, Nyon, Switzerland.

Nicholas C Harvey (NC)

MRC Lifecourse Epidemiology Centre, University of Southampton, Southampton, UK.
NIHR Southampton Biomedical Research Centre, University of Southampton and University Hospital Southampton NHS Foundation Trust, Southampton, UK.

Mickaël Hiligsmann (M)

Department of Health Services Research, Care and Public Health Research Institute (CAPHRI), Maastricht University, Maastricht, The Netherlands.

M Kassim Javaid (MK)

NDORMS, University of Oxford, Windmill Road, Oxford, UK.

John A Kanis (JA)

Mary McKillop Institute for Health Research, Australian Catholic University, Melbourne, Australia.
Centre for Metabolic Bone Diseases, University of Sheffield Medical School, Beech Hill Road, Sheffield, UK.

Jean-Marc Kaufman (JM)

Department of Endocrinology, Ghent University Hospital, Gent, Belgium.

Olivier Lamy (O)

University of Lausanne, UNIL, CHUV, Lausanne, Switzerland.

Radmila Matijevic (R)

Faculty of Medicine, University of Novi Sad, Novi Sad, Serbia.
Clinical Center of Vojvodina, Clinic for Orthopedic Surgery, Novi Sad, Serbia.

Adolfo Diez Perez (AD)

Department of Internal Medicine, Hospital del Mar-IMIM, Autonomous University of Barcelona and CIBERFES, Instituto Carlos III, Madrid, Spain.

Régis Pierre Radermecker (RP)

Department of Diabetes, Nutrition and Metabolic Disorders, Clinical Pharmacology, University of Liege, CHU de Liège, Liège, Belgium.

Mário Miguel Rosa (MM)

Faculty of Medicine, University of Lisboa, Lisbon, Portugal.

Thierry Thomas (T)

Department of Rheumatology, Hôpital Nord, CHU Saint-Etienne, Saint-Etienne, France.
INSERM U1059, Université de Lyon, Université Jean Monnet, Saint-Etienne, France.

Friederike Thomasius (F)

Center of Bone Health, Frankfurt, Germany.

Mila Vlaskovska (M)

Medical Faculty, Department of Pharmacology and Toxicology, Medical University Sofia, Sofia, Bulgaria.

René Rizzoli (R)

Division of Bone Diseases, Department of Medicine, Faculty of Medicine, Geneva University Hospitals, University of Geneva, Geneva, Switzerland.

Cyrus Cooper (C)

MRC Lifecourse Epidemiology Centre, University of Southampton, Southampton, UK. cc@mrc.soton.ac.uk.
NIHR Southampton Biomedical Research Centre, University of Southampton and University Hospital Southampton NHS Foundation Trust, Southampton, UK. cc@mrc.soton.ac.uk.
NIHR Oxford Biomedical Research Centre, University of Oxford, Oxford, UK. cc@mrc.soton.ac.uk.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH