Management of patients at very high risk of osteoporotic fractures through sequential treatments.
Anabolic
Antiresorptive
Epidemiology
Fracture
Imminent
Osteoporosis
Journal
Aging clinical and experimental research
ISSN: 1720-8319
Titre abrégé: Aging Clin Exp Res
Pays: Germany
ID NLM: 101132995
Informations de publication
Date de publication:
Apr 2022
Apr 2022
Historique:
received:
11
02
2022
accepted:
18
02
2022
pubmed:
26
3
2022
medline:
11
5
2022
entrez:
25
3
2022
Statut:
ppublish
Résumé
Osteoporosis care has evolved markedly over the last 50 years, such that there are now an established clinical definition, validated methods of fracture risk assessment and a range of effective pharmacological agents. Currently, bone-forming (anabolic) agents, in many countries, are used in those patients who have continued to lose bone mineral density (BMD), patients with multiple subsequent fractures or those who have fractured despite treatment with antiresorptive agents. However, head-to-head data suggest that anabolic agents have greater rapidity and efficacy for fracture risk reduction than do antiresorptive therapies. The European Society for Clinical and Economic Aspects of Osteoporosis, Osteoarthritis and Musculoskeletal Diseases (ESCEO) convened an expert working group to discuss the tools available to identify patients at high risk of fracture, review the evidence for the use of anabolic agents as the initial intervention in patients at highest risk of fracture and consider the sequence of therapy following their use. This position paper sets out the findings of the group and the consequent recommendations. The key conclusion is that the current evidence base supports an "anabolic first" approach in patients found to be at very high risk of fracture, followed by maintenance therapy using an antiresorptive agent, and with the subsequent need for antiosteoporosis therapy addressed over a lifetime horizon.
Identifiants
pubmed: 35332506
doi: 10.1007/s40520-022-02100-4
pii: 10.1007/s40520-022-02100-4
pmc: PMC9076733
doi:
Substances chimiques
Anabolic Agents
0
Bone Density Conservation Agents
0
Types de publication
Journal Article
Review
Langues
eng
Sous-ensembles de citation
IM
Pagination
695-714Subventions
Organisme : Medical Research Council
ID : MC_PC_21022
Pays : United Kingdom
Informations de copyright
© 2022. The Author(s).
Références
Hernlund E, Svedbom A, Ivergard M et al (2013) Osteoporosis in the European Union: medical management, epidemiology and economic burden: a report prepared in collaboration with the International Osteoporosis Foundation (IOF) and the European Federation of Pharmaceutical Industry Associations (EFPIA). Arch Osteoporos 8:136
pubmed: 24113837
pmcid: 3880487
doi: 10.1007/s11657-013-0136-1
Cooper C, Cole ZA, Holroyd CR et al (2011) Secular trends in the incidence of hip and other osteoporotic fractures. Osteoporos Int 22:1277–1288
doi: 10.1007/s00198-011-1601-6
Harvey N, Dennison E, Cooper C (2010) Osteoporosis: impact on health and economics. Nat Rev Rheumatol 6:99–105
Kanis JA, Norton N, Harvey NC et al (2021) SCOPE 2021: a new scorecard for osteoporosis in Europe. Arch Osteoporos 16:82
pubmed: 34080059
pmcid: 8172408
doi: 10.1007/s11657-020-00871-9
Barnsley J, Buckland G, Chan PE et al (2021) Pathophysiology and treatment of osteoporosis: challenges for clinical practice in older people. Aging Clin Exp Res 33:759–773
pubmed: 33742387
pmcid: 8084810
doi: 10.1007/s40520-021-01817-y
Oden A, McCloskey EV, Kanis JA et al (2015) Burden of high fracture probability worldwide: secular increases 2010–2040. Osteoporos Int 26:2243–2248
pubmed: 26018089
doi: 10.1007/s00198-015-3154-6
Harvey NC, McCloskey E (2016) Gaps and solutions in bone health: a global framework for improvement. International Osteoporosis Foundation Thematic Report
McClung MR (2021) Role of bone-forming agents in the management of osteoporosis. Aging Clin Exp Res 33:775–791
pubmed: 33594648
doi: 10.1007/s40520-020-01708-8
Cummings SR, Cosman F, Lewiecki EM et al (2017) Goal-directed treatment for osteoporosis: a progress report from the ASBMR-NOF Working Group on Goal-Directed Treatment for Osteoporosis. J Bone Miner Res 32:3–10
pubmed: 27864889
doi: 10.1002/jbmr.3039
Kanis JA, Harvey NC, McCloskey E et al (2020) Algorithm for the management of patients at low, high and very high risk of osteoporotic fractures. Osteoporos Int 31:1–12
pubmed: 31720707
doi: 10.1007/s00198-019-05176-3
Kanis JA, Cooper C, Rizzoli R et al (2019) European guidance for the diagnosis and management of osteoporosis in postmenopausal women. Osteoporos Int 30:3–44
pubmed: 30324412
doi: 10.1007/s00198-018-4704-5
Kanis JA, Cooper C, Rizzoli R et al (2017) Identification and management of patients at increased risk of osteoporotic fracture: outcomes of an ESCEO expert consensus meeting. Osteoporos Int 28:2023–2034
pubmed: 28451733
pmcid: 5483332
doi: 10.1007/s00198-017-4009-0
Kendler DL, Marin F, Zerbini CAF et al (2018) Effects of teriparatide and risedronate on new fractures in post-menopausal women with severe osteoporosis (VERO): a multicentre, double-blind, double-dummy, randomised controlled trial. Lancet 391:230–240
pubmed: 29129436
doi: 10.1016/S0140-6736(17)32137-2
Saag KG, Petersen J, Brandi ML et al (2017) Romosozumab or alendronate for fracture prevention in women with osteoporosis. N Engl J Med 377:1417–1427
pubmed: 28892457
doi: 10.1056/NEJMoa1708322
Barrionuevo P, Kapoor E, Asi N et al (2019) Efficacy of pharmacological therapies for the prevention of fractures in postmenopausal women: a network meta-analysis. J Clin Endocrinol Metab 104:1623–1630
pubmed: 30907957
doi: 10.1210/jc.2019-00192
Díez-Pérez A, Marin F, Eriksen EF et al (2019) Effects of teriparatide on hip and upper limb fractures in patients with osteoporosis: a systematic review and meta-analysis. Bone 120:1–8
pubmed: 30268814
doi: 10.1016/j.bone.2018.09.020
McCloskey EV, Borgstrom F, Cooper C et al (2021) Short time horizons for fracture prediction tools: time for a rethink. Osteoporos Int 32:1019–1025
pubmed: 33914103
pmcid: 7611752
doi: 10.1007/s00198-021-05962-y
Javaid MK, Harvey NC, McCloskey EV (2022) Assessment and management of imminent fracture risk in the setting of the fracture liaison service. Osteoporos Int. doi: 10.1007/s00198-021-06284-9
Kanis JA, Johansson H, Odén A et al (2018) Characteristics of recurrent fractures. Osteoporos Int 29:1747–1757
pubmed: 29947869
pmcid: 6076437
doi: 10.1007/s00198-018-4502-0
Hippisley-Cox J, Coupland C (2009) Predicting risk of osteoporotic fracture in men and women in England and Wales: prospective derivation and validation of QFractureScores. BMJ 339:b4229
pubmed: 19926696
pmcid: 2779855
doi: 10.1136/bmj.b4229
Hippisley-Cox J, Coupland C (2012) Derivation and validation of updated QFracture algorithm to predict risk of osteoporotic fracture in primary care in the United Kingdom: prospective open cohort study. BMJ 344:e3427
pubmed: 22619194
doi: 10.1136/bmj.e3427
Nguyen ND, Frost SA, Center JR et al (2008) Development of prognostic nomograms for individualizing 5-year and 10-year fracture risks. Osteoporos Int 19:1431–1444
pubmed: 18324342
doi: 10.1007/s00198-008-0588-0
Kanis JA, Oden A, McCloskey EV et al (2012) A systematic review of hip fracture incidence and probability of fracture worldwide. Osteoporos Int 23:2239–2256
pubmed: 22419370
pmcid: 3421108
doi: 10.1007/s00198-012-1964-3
Khalid S, Reyes C, Ernst M et al (2021) One- and 2-year incidence of osteoporotic fracture: a multi-cohort observational study using routinely collected real-world data. Osteoporos Int. https://doi.org/10.1007/s00198-021-06077-0
doi: 10.1007/s00198-021-06077-0
pubmed: 34392386
pmcid: 8758600
Khalid S, Pineda-Moncusí M, El-Hussein L et al (2021) Predicting imminent fractures in patients with a recent fracture or starting oral bisphosphonate therapy: development and International Validation of Prognostic Models. J Bone Miner Res 36:2162–2176
pubmed: 34342378
doi: 10.1002/jbmr.4414
van Geel TA, van Helden S, Geusens PP et al (2009) Clinical subsequent fractures cluster in time after first fractures. Ann Rheum Dis 68:99–102
pubmed: 18677009
doi: 10.1136/ard.2008.092775
Toth E, Banefelt J, Åkesson K et al (2020) History of previous fracture and imminent fracture risk in Swedish women aged 55 to 90 years presenting with a fragility fracture. J Bone Miner Res 35:861–868
pubmed: 31914206
doi: 10.1002/jbmr.3953
Hadji P, Schweikert B, Kloppmann E et al (2021) Osteoporotic fractures and subsequent fractures: imminent fracture risk from an analysis of German real-world claims data. Arch Gynecol Obstet 304:703–712
pubmed: 34247254
pmcid: 8325652
doi: 10.1007/s00404-021-06123-6
Almog YA, Rai A, Zhang P et al (2020) Deep learning with electronic health records for short-term fracture risk identification: crystal bone algorithm development and validation. J Med Internet Res 22:22550
doi: 10.2196/22550
Rubin KH, Möller S, Holmberg T et al (2018) A new fracture risk assessment tool (FREM) based on public health registries. J Bone Miner Res 33:1967–1979
pubmed: 29924428
doi: 10.1002/jbmr.3528
Skjødt MK, Möller S, Hyldig N et al (2021) Validation of the fracture risk evaluation model (FREM) in predicting major osteoporotic fractures and hip fractures using administrative health data. Bone 147:115934
pubmed: 33757901
doi: 10.1016/j.bone.2021.115934
Möller S, Skjødt MK, Yan L et al (2022) Prediction of imminent fracture risk in Canadian women and men aged 45 years or older: external validation of the Fracture Risk Evaluation Model (FREM). Osteoporos Int 33:57–66
pubmed: 34596704
doi: 10.1007/s00198-021-06165-1
Shoback D, Rosen CJ, Black DM et al (2020) Pharmacological management of osteoporosis in postmenopausal women: an endocrine society guideline update. J Clin Endocrinol Metab 105:587
doi: 10.1210/clinem/dgaa048
(SIGN) SIGN (2021) Management of osteoporosis and teh prevention of fragility fractures. SIGN, Edinburgh
Kanis JA, Johansson H, Harvey NC et al (2021) An assessment of intervention thresholds for very high fracture risk applied to the NOGG guidelines : a report for the National Osteoporosis Guideline Group (NOGG). Osteoporos Int 32:1951–1960
pubmed: 33813622
doi: 10.1007/s00198-021-05942-2
Ferrari S, Lippuner K, Lamy O et al (2020) 2020 recommendations for osteoporosis treatment according to fracture risk from the Swiss Association against Osteoporosis (SVGO). Swiss Med Wkly 150:w20352
pubmed: 33038260
Cooper CJM, Elliott M, Stephens D et al. (2020) UK consensus guideline on the management of patients at low, high, and very high risk of osteoporotic fracture www.guidelines.co.uk . MGP Guidelines
Kanis JA (2007) Assessment of osteoporosis at the primary health care level. World Health Organization, Geneva
Kanis JA, Johansson H, Harvey NC et al (2018) A brief history of FRAX. Arch Osteoporos 13:118
pubmed: 30382424
pmcid: 6290984
doi: 10.1007/s11657-018-0510-0
Kanis JA, Johansson H, Oden A et al (2014) Worldwide uptake of FRAX. Arch Osteoporos 9:166
pubmed: 24420978
doi: 10.1007/s11657-013-0166-8
Kanis JA, Harvey NC, Cooper C et al (2016) A systematic review of intervention thresholds based on FRAX: a report prepared for the National Osteoporosis Guideline Group and the International Osteoporosis Foundation. Arch Osteoporos 11:25
pubmed: 27465509
pmcid: 4978487
doi: 10.1007/s11657-016-0278-z
Kanis JA, Harvey NC, Johansson H et al (2020) A decade of FRAX: how has it changed the management of osteoporosis? Aging Clin Exp Res 32:187–196
pubmed: 32043227
doi: 10.1007/s40520-019-01432-y
Lorentzon M, Branco J, Brandi ML et al (2019) Algorithm for the use of biochemical markers of bone turnover in the diagnosis, assessment and follow-up of treatment for osteoporosis. Adv Ther. https://doi.org/10.1007/s12325-019-01063-9
doi: 10.1007/s12325-019-01063-9
pubmed: 31440982
pmcid: 6822833
McCloskey E, Kanis JA, Johansson H et al (2015) FRAX-based assessment and intervention thresholds—an exploration of thresholds in women aged 50 years and older in the UK. Osteoporos Int 26:2091–2099
pubmed: 26077380
doi: 10.1007/s00198-015-3176-0
Johansson H, Siggeirsdóttir K, Harvey NC et al (2017) Imminent risk of fracture after fracture. Osteoporos Int 28:775–780
pubmed: 28028554
doi: 10.1007/s00198-016-3868-0
Johnell O, Kanis JA, Oden A et al (2004) Fracture risk following an osteoporotic fracture. Osteoporos Int 15:175–179
pubmed: 14691617
doi: 10.1007/s00198-003-1514-0
Ahmed LA, Center JR, Bjørnerem Å et al (2013) Progressively increasing fracture risk with advancing age after initial incident fragility fracture: the Tromsø study. J Bone Miner Res 28:2214–2221
pubmed: 23572401
doi: 10.1002/jbmr.1952
Kanis JA, Johansson H, Harvey NC et al (2020) Adjusting conventional FRAX estimates of fracture probability according to the recency of sentinel fractures. Osteoporos Int 31:1817–1828
pubmed: 32613411
pmcid: 7116089
doi: 10.1007/s00198-020-05517-7
Kanis JA, Johansson H, Harvey NC et al (2021) The use of 2-, 5-, and 10-year probabilities to characterize fracture risk after a recent sentinel fracture. Osteoporos Int 32:47–54
pubmed: 33083910
doi: 10.1007/s00198-020-05700-w
Leder BZ, Tsai JN, Neer RM et al (2016) Response to therapy with teriparatide, denosumab, or both in postmenopausal women in the DATA (Denosumab and Teriparatide Administration) Study Randomized Controlled Trial. J Clin Densitom 19:346–351
pubmed: 26900146
doi: 10.1016/j.jocd.2016.01.004
Bone HG, Cosman F, Miller PD et al (2018) ACTIVExtend: 24 months of alendronate after 18 months of abaloparatide or placebo for postmenopausal osteoporosis. J Clin Endocrinol Metab 103:2949–2957
pubmed: 29800372
pmcid: 6097601
doi: 10.1210/jc.2018-00163
Cosman F, Nieves JW, Dempster DW (2017) Treatment sequence matters: anabolic and antiresorptive therapy for osteoporosis. J Bone Miner Res 32:198–202
pubmed: 27925287
doi: 10.1002/jbmr.3051
Kanis JA, Cooper C, Rizzoli R et al (2018) Review of the guideline of the American College of Physicians on the treatment of osteoporosis. Osteoporos Int 29:1505–1510
pubmed: 29869039
pmcid: 6037298
doi: 10.1007/s00198-018-4504-y
Canalis E, Giustina A, Bilezikian JP (2007) Mechanisms of anabolic therapies for osteoporosis. N Engl J Med 357:905–916
pubmed: 17761594
doi: 10.1056/NEJMra067395
Neer RM, Arnaud CD, Zanchetta JR et al (2001) Effect of parathyroid hormone (1–34) on fractures and bone mineral density in postmenopausal women with osteoporosis. N Engl J Med 344:1434–1441
pubmed: 11346808
doi: 10.1056/NEJM200105103441904
Prince R, Sipos A, Hossain A et al (2005) Sustained nonvertebral fragility fracture risk reduction after discontinuation of teriparatide treatment. J Bone Miner Res 20:1507–1513
pubmed: 16059622
doi: 10.1359/JBMR.050501
Lindsay R, Scheele WH, Neer R et al (2004) Sustained vertebral fracture risk reduction after withdrawal of teriparatide in postmenopausal women with osteoporosis. Arch Intern Med 164:2024–2030
pubmed: 15477438
doi: 10.1001/archinte.164.18.2024
Kaufman JM, Orwoll E, Goemaere S et al (2005) Teriparatide effects on vertebral fractures and bone mineral density in men with osteoporosis: treatment and discontinuation of therapy. Osteoporos Int 16:510–516
pubmed: 15322742
doi: 10.1007/s00198-004-1713-3
Eastell R, Nickelsen T, Marin F et al (2009) Sequential treatment of severe postmenopausal osteoporosis after teriparatide: final results of the randomized, controlled European Study of Forsteo (EUROFORS). J Bone Miner Res 24:726–736
pubmed: 19049337
doi: 10.1359/jbmr.081215
Kaufman JM (2021) Management of osteoporosis in older men. Aging Clin Exp Res 33:1439–1452
pubmed: 33821467
doi: 10.1007/s40520-021-01845-8
Finkelstein JS, Hayes A, Hunzelman JL et al (2003) The effects of parathyroid hormone, alendronate, or both in men with osteoporosis. N Engl J Med 349:1216–1226
pubmed: 14500805
doi: 10.1056/NEJMoa035725
Finkelstein JS, Wyland JJ, Lee H et al (2010) Effects of teriparatide, alendronate, or both in women with postmenopausal osteoporosis. J Clin Endocrinol Metab 95:1838–1845
pubmed: 20164296
pmcid: 2853981
doi: 10.1210/jc.2009-1703
Cosman F, Eriksen EF, Recknor C et al (2011) Effects of intravenous zoledronic acid plus subcutaneous teriparatide [rhPTH(1–34)] in postmenopausal osteoporosis. J Bone Miner Res 26:503–511
pubmed: 20814967
doi: 10.1002/jbmr.238
Tsai JN, Uihlein AV, Lee H et al (2013) Teriparatide and denosumab, alone or combined, in women with postmenopausal osteoporosis: the DATA study randomised trial. Lancet 382:50–56
pubmed: 23683600
pmcid: 4083737
doi: 10.1016/S0140-6736(13)60856-9
Leder BZ, Tsai JN, Uihlein AV et al (2015) Denosumab and teriparatide transitions in postmenopausal osteoporosis (the DATA-Switch study): extension of a randomised controlled trial. Lancet 386:1147–1155
pubmed: 26144908
pmcid: 4620731
doi: 10.1016/S0140-6736(15)61120-5
Hattersley G, Dean T, Corbin BA et al (2016) Binding selectivity of abaloparatide for PTH-Type-1-receptor conformations and effects on downstream signaling. Endocrinology 157:141–149
pubmed: 26562265
doi: 10.1210/en.2015-1726
Miller PD, Hattersley G, Riis BJ et al (2016) Effect of abaloparatide vs placebo on new vertebral fractures in postmenopausal women with osteoporosis: a randomized clinical trial. JAMA 316:722–733
pubmed: 27533157
doi: 10.1001/jama.2016.11136
Cosman F, Miller PD, Williams GC et al (2017) Eighteen months of treatment with subcutaneous abaloparatide followed by 6 months of treatment with alendronate in postmenopausal women with osteoporosis: results of the ACTIVExtend Trial. Mayo Clin Proc 92:200–210
pubmed: 28160873
doi: 10.1016/j.mayocp.2016.10.009
Reginster J-Y, Hattersley G, Williams GC et al (2018) Abaloparatide is an effective treatment option for postmenopausal osteoporosis: review of the number needed to treat compared with teriparatide. Calcif Tissue Int 103:540–545
pubmed: 29951742
pmcid: 6182596
doi: 10.1007/s00223-018-0450-0
Estell EG, Rosen CJ (2021) Emerging insights into the comparative effectiveness of anabolic therapies for osteoporosis. Nat Rev Endocrinol 17:31–46
pubmed: 33149262
doi: 10.1038/s41574-020-00426-5
McClung MR, Grauer A, Boonen S et al (2014) Romosozumab in postmenopausal women with low bone mineral density. N Engl J Med 370:412–420
pubmed: 24382002
doi: 10.1056/NEJMoa1305224
Padhi D, Jang G, Stouch B et al (2011) Single-dose, placebo-controlled, randomized study of AMG 785, a sclerostin monoclonal antibody. J Bone Miner Res 26:19–26
pubmed: 20593411
doi: 10.1002/jbmr.173
Cosman F, Crittenden DB, Adachi JD et al (2016) Romosozumab treatment in postmenopausal women with osteoporosis. N Engl J Med 375:1532–1543
pubmed: 27641143
doi: 10.1056/NEJMoa1607948
Cosman F, Crittenden DB, Ferrari S et al (2018) Romosozumab FRAME study: a post hoc analysis of the role of regional background fracture risk on nonvertebral fracture outcome. J Bone Miner Res 33:1407–1416
pubmed: 29750828
doi: 10.1002/jbmr.3439
McCloskey EV, Johansson H, Harvey NC et al (2021) Romosozumab efficacy on fracture outcomes is greater in patients at high baseline fracture risk: a post hoc analysis of the first year of the frame study. Osteoporos Int 32:1601–1608
pubmed: 33537844
pmcid: 8376732
doi: 10.1007/s00198-020-05815-0
Lewiecki EM, Dinavahi RV, Lazaretti-Castro M et al (2019) One year of romosozumab followed by two years of denosumab maintains fracture risk reductions: results of the FRAME Extension Study. J Bone Miner Res 34:419–428
pubmed: 30508316
doi: 10.1002/jbmr.3622
Cosman F, Crittenden DB, Ferrari S et al (2018) FRAME study: the foundation effect of building bone with 1 year of romosozumab leads to continued lower fracture risk after transition to denosumab. J Bone Miner Res 33:1219–1226
pubmed: 29573473
doi: 10.1002/jbmr.3427
Bone HG, Wagman RB, Brandi ML et al (2017) 10 years of denosumab treatment in postmenopausal women with osteoporosis: results from the phase 3 randomised FREEDOM trial and open-label extension. Lancet Diabetes Endocrinol 5:513–523
pubmed: 28546097
doi: 10.1016/S2213-8587(17)30138-9
McClung MR, Brown JP, Diez-Perez A et al (2018) Effects of 24 months of treatment with romosozumab followed by 12 months of denosumab or placebo in postmenopausal women with low bone mineral density: a Randomized, Double-Blind, Phase 2, Parallel Group Study. J Bone Miner Res 33:1397–1406
pubmed: 29694685
doi: 10.1002/jbmr.3452
McClung MR, Bolognese MA, Brown JP et al (2020) A single dose of zoledronate preserves bone mineral density for up to 2 years after a second course of romosozumab. Osteoporos Int 31:2231–2241
pubmed: 32623487
pmcid: 7560921
doi: 10.1007/s00198-020-05502-0
Harvey NC, Kanis JA, Odén A et al (2015) Efficacy of weekly teriparatide does not vary by baseline fracture probability calculated using FRAX. Osteoporos Int 26:2347–2353
pubmed: 26092062
pmcid: 4532707
doi: 10.1007/s00198-015-3129-7
Harvey NC, Kanis JA, Odén A et al (2015) FRAX and the effect of teriparatide on vertebral and non-vertebral fracture. Osteoporos Int 26:2677–2684
pubmed: 26092063
pmcid: 4913866
doi: 10.1007/s00198-015-3173-3
Fuggle NR, Cooper C, Harvey NC et al (2020) Assessment of cardiovascular safety of anti-osteoporosis drugs. Drugs 80:1537–1552
pubmed: 32725307
pmcid: 7536167
doi: 10.1007/s40265-020-01364-2
Langdahl BL, Libanati C, Crittenden DB et al (2017) Romosozumab (sclerostin monoclonal antibody) versus teriparatide in postmenopausal women with osteoporosis transitioning from oral bisphosphonate therapy: a randomised, open-label, phase 3 trial. Lancet 390:1585–1594
pubmed: 28755782
doi: 10.1016/S0140-6736(17)31613-6
Compston J, Cooper A, Cooper C et al (2017) UK clinical guideline for the prevention and treatment of osteoporosis. Arch Osteoporos 12:43
pubmed: 28425085
pmcid: 5397452
doi: 10.1007/s11657-017-0324-5
Harvey NC, McCloskey E, Kanis JA et al (2018) Cost-effective but clinically inappropriate: new NICE intervention thresholds in osteoporosis (Technology Appraisal 464). Osteoporos Int 29:1511–1513
pubmed: 29947864
pmcid: 6037288
doi: 10.1007/s00198-018-4505-x
Vahle JL, Sato M, Long GG et al (2002) Skeletal changes in rats given daily subcutaneous injections of recombinant human parathyroid hormone (1–34) for 2 years and relevance to human safety. Toxicol Pathol 30:312–321
pubmed: 12051548
doi: 10.1080/01926230252929882
Gilsenan A, Midkiff K, Harris D et al (2021) Teriparatide Did Not Increase Adult Osteosarcoma Incidence in a 15-Year US Postmarketing Surveillance Study. J Bone Miner Res 36:244–251
pubmed: 32990990
doi: 10.1002/jbmr.4188
Ma YL, Zeng QQ, Chiang AY et al (2014) Effects of teriparatide on cortical histomorphometric variables in postmenopausal women with or without prior alendronate treatment. Bone 59:139–147
pubmed: 24269280
doi: 10.1016/j.bone.2013.11.011
Dempster DW, Roschger P, Misof BM et al (2016) Differential effects of teriparatide and zoledronic acid on bone mineralization density distribution at 6 and 24 months in the SHOTZ Study. J Bone Miner Res 31:1527–1535
pubmed: 26931279
doi: 10.1002/jbmr.2825
Lindsay R, Miller P, Pohl G et al (2009) Relationship between duration of teriparatide therapy and clinical outcomes in postmenopausal women with osteoporosis. Osteoporos Int 20:943–948
pubmed: 18923884
doi: 10.1007/s00198-008-0766-0
Saag KG, Zanchetta JR, Devogelaer JP et al (2009) Effects of teriparatide versus alendronate for treating glucocorticoid-induced osteoporosis: thirty-six-month results of a randomized, double-blind, controlled trial. Arthritis Rheum 60:3346–3355
pubmed: 19877063
doi: 10.1002/art.24879
Gatti D, Viapiana O, Idolazzi L et al (2011) The waning of teriparatide effect on bone formation markers in postmenopausal osteoporosis is associated with increasing serum levels of DKK1. J Clin Endocrinol Metab 96:1555–1559
pubmed: 21367927
doi: 10.1210/jc.2010-2552
Eastell R, Mitlak BH, Wang Y et al (2019) Bone turnover markers to explain changes in lumbar spine BMD with abaloparatide and teriparatide: results from ACTIVE. Osteoporos Int 30:667–673
pubmed: 30635696
pmcid: 6422956
doi: 10.1007/s00198-018-04819-1
Ross PD, Knowlton W (1998) Rapid bone loss is associated with increased levels of biochemical markers. J Bone Miner Res 13:297–302
pubmed: 9495524
doi: 10.1359/jbmr.1998.13.2.297
Johansson H, Odén A, Kanis JA et al (2014) A meta-analysis of reference markers of bone turnover for prediction of fracture. Calcif Tissue Int 94:560–567
pubmed: 24590144
doi: 10.1007/s00223-014-9842-y
Ivaska KK, Gerdhem P, Akesson K et al (2007) Effect of fracture on bone turnover markers: a longitudinal study comparing marker levels before and after injury in 113 elderly women. J Bone Miner Res 22:1155–1164
pubmed: 17488197
doi: 10.1359/jbmr.070505
Ingle BM, Hay SM, Bottjer HM et al (1999) Changes in bone mass and bone turnover following distal forearm fracture. Osteoporos Int 10:399–407
pubmed: 10591838
doi: 10.1007/s001980050246
Garnero P, Hausherr E, Chapuy MC et al (1996) Markers of bone resorption predict hip fracture in elderly women: the EPIDOS Prospective Study. J Bone Miner Res 11:1531–1538
pubmed: 8889854
doi: 10.1002/jbmr.5650111021
Mun H, Liu B, Pham THA et al (2021) C-reactive protein and fracture risk: an updated systematic review and meta-analysis of cohort studies through the use of both frequentist and Bayesian approaches. Osteoporos Int 32:425–435
pubmed: 32935169
doi: 10.1007/s00198-020-05623-6
Yin P, Lv H, Li Y et al (2017) The association between serum uric acid level and the risk of fractures: a systematic review and meta-analysis. Osteoporos Int 28:2299–2307
pubmed: 28488134
doi: 10.1007/s00198-017-4059-3
Ensrud KE, Parimi N, Cauley JA et al (2013) Cystatin C and risk of hip fractures in older women. J Bone Miner Res 28:1275–1282
pubmed: 23300153
doi: 10.1002/jbmr.1858
Garnero P (2017) The utility of biomarkers in osteoporosis management. Mol Diagn Ther 21:401–418
pubmed: 28271451
doi: 10.1007/s40291-017-0272-1
Lee SH, Lee JY, Lim KH et al (2020) High circulating sphingosine 1-phosphate is a risk factor for osteoporotic fracture independent of fracture risk assessment tool. Calcif Tissue Int 107:362–370
pubmed: 32719936
doi: 10.1007/s00223-020-00731-1
Fontalis A, Eastell R (2020) The challenge of long-term adherence: The role of bone turnover markers in monitoring bisphosphonate treatment of osteoporosis. Bone 136:115336
pubmed: 32234415
doi: 10.1016/j.bone.2020.115336
Cosman F, Nieves JW, Zion M et al (2015) Daily or cyclical teriparatide treatment in women with osteoporosis on no prior therapy and women on alendronate. J Clin Endocrinol Metab 100:2769–2776
pubmed: 25961136
pmcid: 5393523
doi: 10.1210/jc.2015-1715
Cosman F, McMahon D, Dempster D et al (2020) Standard versus cyclic teriparatide and denosumab treatment for osteoporosis: a randomized trial. J Bone Miner Res 35:219–225
pubmed: 31419313
doi: 10.1002/jbmr.3850
Elbers LPB, Raterman HG, Lems WF (2021) Bone mineral density loss and fracture risk after discontinuation of anti-osteoporotic drug treatment: a narrative review. Drugs 81:1645–1655
pubmed: 34524681
pmcid: 8519894
doi: 10.1007/s40265-021-01587-x
Anastasilakis AD, Papapoulos SE, Polyzos SA (2019) Zoledronate for the prevention of bone loss in women discontinuing denosumab treatment. A prospective 2-year clinical trial. J Bone Miner Res 34:2220–2228
pubmed: 31433518
doi: 10.1002/jbmr.3853
Ramchand SK, David NL, Lee H et al (2021) Efficacy of zoledronic acid in maintaining areal and volumetric bone density after combined denosumab and teriparatide administration: DATA-HD study extension. J Bone Miner Res 36:921–930
pubmed: 33507574
doi: 10.1002/jbmr.4259
Zanchetta MB, Boailchuk J, Massari F et al (2018) Significant bone loss after stopping long-term denosumab treatment: a post FREEDOM study. Osteoporos Int 29:41–47
pubmed: 28975362
doi: 10.1007/s00198-017-4242-6
Popp AW, Varathan N, Buffat H et al (2018) Bone mineral density changes after 1 year of denosumab discontinuation in postmenopausal women with long-term denosumab treatment for osteoporosis. Calcif Tissue Int 103:50–54
pubmed: 29380013
doi: 10.1007/s00223-018-0394-4
Anastasilakis AD, Makras P, Yavropoulou MP et al (2021) Denosumab discontinuation and the rebound phenomenon: a narrative review. J Clin Med 10:152
pmcid: 7796169
doi: 10.3390/jcm10010152
Burckhardt P, Faouzi M, Buclin T et al (2021) Fractures after denosumab discontinuation: a retrospective study of 797 cases. J Bone Miner Res 36:1717–1728
pubmed: 34009703
doi: 10.1002/jbmr.4335
Fatoye F, Smith P, Gebrye T et al (2019) Real-world persistence and adherence with oral bisphosphonates for osteoporosis: a systematic review. BMJ Open 9:e027049
pubmed: 30987990
pmcid: 6500256
doi: 10.1136/bmjopen-2018-027049
Ross S, Samuels E, Gairy K et al (2011) A meta-analysis of osteoporotic fracture risk with medication nonadherence. Value Health 14:571–581
pubmed: 21669382
doi: 10.1016/j.jval.2010.11.010
Hiligsmann M, McGowan B, Bennett K et al (2012) The clinical and economic burden of poor adherence and persistence with osteoporosis medications in Ireland. Value Health 15:604–612
pubmed: 22867768
doi: 10.1016/j.jval.2012.02.001
Koller G, Goetz V, Vandermeer B et al (2020) Persistence and adherence to parenteral osteoporosis therapies: a systematic review. Osteoporos Int 31:2093–2102
pubmed: 32613409
doi: 10.1007/s00198-020-05507-9
Yeam CT, Chia S, Tan HCC et al (2018) A systematic review of factors affecting medication adherence among patients with osteoporosis. Osteoporos Int 29:2623–2637
pubmed: 30417253
doi: 10.1007/s00198-018-4759-3
Hiligsmann M, Cornelissen D, Vrijens B et al (2019) Determinants, consequences and potential solutions to poor adherence to anti-osteoporosis treatment: results of an expert group meeting organized by the European Society for Clinical and Economic Aspects of Osteoporosis, Osteoarthritis and Musculoskeletal Diseases (ESCEO) and the International Osteoporosis Foundation (IOF). Osteoporos Int 30:2155–2165
pubmed: 31388696
pmcid: 6811382
doi: 10.1007/s00198-019-05104-5
Barrionuevo P, Gionfriddo MR, Castaneda-Guarderas A et al (2019) Women’s values and preferences regarding osteoporosis treatments: a systematic review. J Clin Endocrinol Metab 104:1631–1636
pubmed: 30907968
pmcid: 7296202
doi: 10.1210/jc.2019-00193
Cornelissen D, de Kunder S, Si L et al (2020) Interventions to improve adherence to anti-osteoporosis medications: an updated systematic review. Osteoporos Int 31:1645–1669
pubmed: 32358684
pmcid: 7423788
doi: 10.1007/s00198-020-05378-0
Cornelissen D, Boonen A, Bours S et al (2020) Understanding patients’ preferences for osteoporosis treatment: the impact of patients’ characteristics on subgroups and latent classes. Osteoporos Int 31:85–96
pubmed: 31606825
doi: 10.1007/s00198-019-05154-9
Hiligsmann M, Dellaert BG, Dirksen CD et al (2017) Patients’ preferences for anti-osteoporosis drug treatment: a cross-European discrete choice experiment. Rheumatology 56:1167–1176
pubmed: 28398547
doi: 10.1093/rheumatology/kex071
Hiligsmann M, Dellaert BG, Dirksen CD et al (2014) Patients’ preferences for osteoporosis drug treatment: a discrete-choice experiment. Arthritis Res Ther 16:R36
pubmed: 24479410
pmcid: 3979104
doi: 10.1186/ar4465
Sato M, Tsujimoto M, Kajimoto K et al (2018) Effect of a patient-support program on once-daily teriparatide adherence and persistence in the Japan Fracture Observational Study (JFOS). Arch Osteoporos 13:74
pubmed: 29978364
pmcid: 6310708
doi: 10.1007/s11657-018-0487-8
Li N, Cornelissen D, Silverman S et al (2021) An updated systematic review of cost-effectiveness analyses of drugs for osteoporosis. Pharmacoeconomics 39:181–209
pubmed: 33026634
doi: 10.1007/s40273-020-00965-9
Hiligsmann M, Reginster JY, Tosteson ANA et al (2019) Recommendations for the conduct of economic evaluations in osteoporosis: outcomes of an experts’ consensus meeting organized by the European Society for Clinical and Economic Aspects of Osteoporosis, Osteoarthritis and Musculoskeletal Diseases (ESCEO) and the US branch of the International Osteoporosis Foundation. Osteoporos Int 30:45–57
pubmed: 30382319
doi: 10.1007/s00198-018-4744-x
Le QA, Hay JW, Becker R et al (2019) Cost-effectiveness analysis of sequential treatment of abaloparatide followed by alendronate versus teriparatide followed by alendronate in postmenopausal women with osteoporosis in the United States. Ann Pharmacother 53:134–143
pubmed: 30160186
doi: 10.1177/1060028018798034
Mori T, Crandall CJ, Ganz DA (2019) Cost-effectiveness of sequential teriparatide/alendronate versus alendronate-alone strategies in high-risk osteoporotic women in the US: analyzing the impact of generic/biosimilar teriparatide. JBMR Plus 3:10233
doi: 10.1002/jbm4.10233
Hiligsmann M, Williams SA, Fitzpatrick LA (2019) Cost-effectiveness of sequential treatment with abaloparatide vs. teriparatide for United States women at increased risk of fracture. Semin Arthritis Rheum 49:184–196
pubmed: 30737062
doi: 10.1016/j.semarthrit.2019.01.006
Hiligsmann M, Williams SA, Fitzpatrick LA (2020) Cost-effectiveness of sequential treatment with abaloparatide followed by alendronate vs. alendronate monotherapy in women at increased risk of fracture: a US payer perspective. Semin Arthritis Rheum 50:394–400
pubmed: 32160943
doi: 10.1016/j.semarthrit.2020.02.004
Söreskog E, Borgström F, Lindberg I et al (2021) A novel economic framework to assess the cost-effectiveness of bone-forming agents in the prevention of fractures in patients with osteoporosis. Osteoporos Int 32:1301–1311
pubmed: 33411005
pmcid: 8192365
doi: 10.1007/s00198-020-05765-7
Söreskog E, Lindberg I, Kanis JA et al (2021) Cost-effectiveness of romosozumab for the treatment of postmenopausal women with severe osteoporosis at high risk of fracture in Sweden. Osteoporos Int 32:585–594
pubmed: 33409591
pmcid: 7929944
doi: 10.1007/s00198-020-05780-8
Mori T, Crandall CJ, Fujii T et al (2021) Cost-effectiveness of sequential daily teriparatide/weekly alendronate compared with alendronate monotherapy for older osteoporotic women with prior vertebral fracture in Japan. Arch Osteoporos 16:72
pubmed: 33866457
pmcid: 8053143
doi: 10.1007/s11657-021-00891-z
Mori T, Crandall CJ, Fujii T et al (2021) Cost-effectiveness of zoledronic acid compared with sequential denosumab/alendronate for older osteoporotic women in Japan. Arch Osteoporos 16:113
pubmed: 34264429
pmcid: 8282566
doi: 10.1007/s11657-021-00956-z