Minimal cross-trial generalization in learning the representation of an odor-guided choice task.
Journal
PLoS computational biology
ISSN: 1553-7358
Titre abrégé: PLoS Comput Biol
Pays: United States
ID NLM: 101238922
Informations de publication
Date de publication:
03 2022
03 2022
Historique:
received:
23
05
2021
accepted:
04
02
2022
revised:
06
04
2022
pubmed:
26
3
2022
medline:
9
4
2022
entrez:
25
3
2022
Statut:
epublish
Résumé
There is no single way to represent a task. Indeed, despite experiencing the same task events and contingencies, different subjects may form distinct task representations. As experimenters, we often assume that subjects represent the task as we envision it. However, such a representation cannot be taken for granted, especially in animal experiments where we cannot deliver explicit instruction regarding the structure of the task. Here, we tested how rats represent an odor-guided choice task in which two odor cues indicated which of two responses would lead to reward, whereas a third odor indicated free choice among the two responses. A parsimonious task representation would allow animals to learn from the forced trials what is the better option to choose in the free-choice trials. However, animals may not necessarily generalize across odors in this way. We fit reinforcement-learning models that use different task representations to trial-by-trial choice behavior of individual rats performing this task, and quantified the degree to which each animal used the more parsimonious representation, generalizing across trial types. Model comparison revealed that most rats did not acquire this representation despite extensive experience. Our results demonstrate the importance of formally testing possible task representations that can afford the observed behavior, rather than assuming that animals' task representations abide by the generative task structure that governs the experimental design.
Identifiants
pubmed: 35333867
doi: 10.1371/journal.pcbi.1009897
pii: PCOMPBIOL-D-21-00959
pmc: PMC8986096
doi:
Types de publication
Journal Article
Research Support, N.I.H., Extramural
Langues
eng
Sous-ensembles de citation
IM
Pagination
e1009897Subventions
Organisme : NIDA NIH HHS
ID : R01 DA042065
Pays : United States
Organisme : NIDA NIH HHS
ID : R01 DA050647
Pays : United States
Déclaration de conflit d'intérêts
The authors have declared that no competing interests exist.
Références
Nature. 2021 Feb;590(7847):606-611
pubmed: 33361819
Trends Cogn Sci. 2006 Jul;10(7):294-300
pubmed: 16793323
Neuropsychopharmacology. 2018 Nov;43(12):2350-2360
pubmed: 29728645
Science. 2018 Jul 13;361(6398):178-181
pubmed: 30002252
Neuron. 2006 Aug 17;51(4):509-20
pubmed: 16908415
Nat Neurosci. 2019 Oct;22(10):1544-1553
pubmed: 31551597
J Neurosci. 2009 Oct 21;29(42):13365-76
pubmed: 19846724
Nat Neurosci. 2019 Feb;22(2):297-306
pubmed: 30643294
Neuropharmacology. 2014 Jan;76 Pt B:450-9
pubmed: 23748094
Learn Mem. 2011 Jun 21;18(7):475-83
pubmed: 21693635
PLoS Biol. 2008 Apr 8;6(4):e82
pubmed: 18399719
Curr Biol. 2019 Mar 18;29(6):897-907.e3
pubmed: 30827919
Trends Cogn Sci. 2019 May;23(5):408-422
pubmed: 31003893
Front Behav Neurosci. 2013 Nov 18;7:164
pubmed: 24302899
Proc Natl Acad Sci U S A. 2011 Jul 5;108(27):11235-40
pubmed: 21690383
Nat Neurosci. 2018 Jun;21(6):860-868
pubmed: 29760527
Psychol Rev. 2007 Jul;114(3):784-805
pubmed: 17638506
Neuron. 2017 Sep 13;95(6):1395-1405.e3
pubmed: 28910622
Behav Brain Sci. 2019 Feb 04;43:e1
pubmed: 30714890
Top Cogn Sci. 2015 Apr;7(2):217-29
pubmed: 25898807
Nat Neurosci. 2017 Sep;20(9):1269-1276
pubmed: 28758995
J Neurosci. 2007 May 2;27(18):4819-25
pubmed: 17475789
Behav Processes. 2019 Oct;167:103891
pubmed: 31381985
Neuron. 2016 Jul 6;91(1):182-93
pubmed: 27292535
J Exp Psychol Anim Behav Process. 1989 Oct;15(4):338-46
pubmed: 2794870
Psychol Rev. 2013 Jan;120(1):190-229
pubmed: 23356780
Nat Neurosci. 2003 Nov;6(11):1224-9
pubmed: 14566341
J Neurosci. 2012 Jan 11;32(2):551-62
pubmed: 22238090
IEEE Trans Pattern Anal Mach Intell. 2013 Aug;35(8):1798-828
pubmed: 23787338