Unsupervised Image Registration towards Enhancing Performance and Explainability in Cardiac and Brain Image Analysis.

deep learning explainable deep learning inverse-consistency multi-modality image registration unsupervised image registration

Journal

Sensors (Basel, Switzerland)
ISSN: 1424-8220
Titre abrégé: Sensors (Basel)
Pays: Switzerland
ID NLM: 101204366

Informations de publication

Date de publication:
09 Mar 2022
Historique:
received: 04 02 2022
revised: 01 03 2022
accepted: 07 03 2022
entrez: 26 3 2022
pubmed: 27 3 2022
medline: 31 3 2022
Statut: epublish

Résumé

Magnetic Resonance Imaging (MRI) typically recruits multiple sequences (defined here as "modalities"). As each modality is designed to offer different anatomical and functional clinical information, there are evident disparities in the imaging content across modalities. Inter- and intra-modality affine and non-rigid image registration is an essential medical image analysis process in clinical imaging, as for example before imaging biomarkers need to be derived and clinically evaluated across different MRI modalities, time phases and slices. Although commonly needed in real clinical scenarios, affine and non-rigid image registration is not extensively investigated using a single unsupervised model architecture. In our work, we present an unsupervised deep learning registration methodology that can accurately model affine and non-rigid transformations, simultaneously. Moreover, inverse-consistency is a fundamental inter-modality registration property that is not considered in deep learning registration algorithms. To address inverse consistency, our methodology performs bi-directional cross-modality image synthesis to learn modality-invariant latent representations, and involves two factorised transformation networks (one per each encoder-decoder channel) and an inverse-consistency loss to learn topology-preserving anatomical transformations. Overall, our model (named "FIRE") shows improved performances against the reference standard baseline method (i.e., Symmetric Normalization implemented using the ANTs toolbox) on multi-modality brain 2D and 3D MRI and intra-modality cardiac 4D MRI data experiments. We focus on explaining model-data components to enhance model explainability in medical image registration. On computational time experiments, we show that the FIRE model performs on a memory-saving mode, as it can inherently learn topology-preserving image registration directly in the training phase. We therefore demonstrate an efficient and versatile registration technique that can have merit in multi-modal image registrations in the clinical setting.

Identifiants

pubmed: 35336295
pii: s22062125
doi: 10.3390/s22062125
pmc: PMC8951078
pii:
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Subventions

Organisme : Medical Research Council
ID : MC_PC_21013
Pays : United Kingdom
Organisme : Medical Research Council
ID : MR/V023799/1
Pays : United Kingdom
Organisme : British Heart Foundation
ID : PG/16/78/32402
Pays : United Kingdom

Références

Phys Med Biol. 2020 Apr 20;65(8):085003
pubmed: 32097902
Med Image Comput Comput Assist Interv. 2017 Sep;10433:300-308
pubmed: 29250613
Phys Med Biol. 2020 Oct 22;65(20):20TR01
pubmed: 32217829
IEEE Trans Med Imaging. 2001 Jul;20(7):568-82
pubmed: 11465464
IEEE Trans Radiat Plasma Med Sci. 2018 May;2(3):259-271
pubmed: 30003181
J Cardiovasc Magn Reson. 2012 Sep 20;14:66
pubmed: 22995744
Med Image Anal. 2019 May;54:193-206
pubmed: 30939419
J Cardiovasc Magn Reson. 2016 Sep 13;18(1):57
pubmed: 27624746
Phys Med Biol. 2020 Jan 13;65(1):015011
pubmed: 31783390
Med Image Anal. 2019 Dec;58:101535
pubmed: 31351230
Med Image Comput Comput Assist Interv. 2013;16(Pt 2):649-56
pubmed: 24579196
Mach Learn Med Imaging. 2018 Sep;11046:55-63
pubmed: 31098597
Med Phys. 2019 Aug;46(8):3329-3343
pubmed: 31111962
Med Image Anal. 2019 Feb;52:128-143
pubmed: 30579222
Med Image Anal. 2019 Dec;58:101545
pubmed: 31557633
Int J Comput Assist Radiol Surg. 2019 Jan;14(1):43-52
pubmed: 30430361
J Cardiovasc Magn Reson. 2015 Feb 17;17:17
pubmed: 25885056
Entropy (Basel). 2020 Dec 25;23(1):
pubmed: 33375658
Med Image Anal. 2021 Feb;68:101878
pubmed: 33197714
Med Image Anal. 2008 Feb;12(1):26-41
pubmed: 17659998
Expert Syst Appl. 2021 Dec 15;185:115637
pubmed: 34334964
IEEE Trans Med Imaging. 2019 Feb 04;:
pubmed: 30716034
IEEE Trans Med Imaging. 2021 Mar;40(3):781-792
pubmed: 33156786
Med Image Anal. 2021 Jul;71:102036
pubmed: 33827038
Neuroimage. 2017 Sep;158:378-396
pubmed: 28705497

Auteurs

Chengjia Wang (C)

Edinburgh Imaging Facility QMRI, Centre for Cardiovascular Science, University of Edinburgh, Edinburgh EH16 4TJ, UK.

Guang Yang (G)

Faculty of Medicine, National Heart & Lung Institute, Imperial College London, London SW7 2BX, UK.

Giorgos Papanastasiou (G)

Edinburgh Imaging Facility QMRI, Centre for Cardiovascular Science, University of Edinburgh, Edinburgh EH16 4TJ, UK.
School of Computer Science and Electronic Engineering, University of Essex, Colchester CO4 3SQ, UK.

Articles similaires

Humans Ketamine Propofol Pulmonary Atelectasis Female

Selecting optimal software code descriptors-The case of Java.

Yegor Bugayenko, Zamira Kholmatova, Artem Kruglov et al.
1.00
Software Algorithms Programming Languages
Humans Magnetic Resonance Imaging Phantoms, Imaging Infant, Newborn Signal-To-Noise Ratio
1.00
Humans Magnetic Resonance Imaging Brain Infant, Newborn Infant, Premature

Classifications MeSH