Potential of Enterococcus faecium LM5.2 for lipopeptide biosurfactant production and its effect on the growth of maize (Zea mays L.).
16S rRNA gene sequencing
Biosurfactant
Lactic acid bacteria
Mass spectroscopy
Plant growth
Proton nuclear magnetic resonance
Journal
Archives of microbiology
ISSN: 1432-072X
Titre abrégé: Arch Microbiol
Pays: Germany
ID NLM: 0410427
Informations de publication
Date de publication:
28 Mar 2022
28 Mar 2022
Historique:
received:
16
05
2021
accepted:
09
03
2022
revised:
08
03
2022
entrez:
29
3
2022
pubmed:
30
3
2022
medline:
31
3
2022
Statut:
epublish
Résumé
This study characterized the lipopeptide biosurfactants produced by lactic acid bacteria isolated from milk and milk products, in addition to their effect on maize plant growth. The oil displacement test was performed as a primary screening method to select the BS producing bacteria. The strain LM5.2 had the maximum emulsification index of 45.1 ± 3, reduced the surface tension to 32.98 ± 0.23% among all the isolates, and efficiently produced 945.26 ± 4.62 mg/l of biosurfactants within 48 h in MRS broth under the optimum conditions. The isolate LM5.2 was identified using physiochemical tests and 16S rRNA gene sequencing as E. faecium. The biosurfactant was purified by TLC and identified as lipopeptide-like iturins and surfactins based on R
Identifiants
pubmed: 35347441
doi: 10.1007/s00203-022-02834-9
pii: 10.1007/s00203-022-02834-9
doi:
Substances chimiques
Lipopeptides
0
RNA, Ribosomal, 16S
0
Surface-Active Agents
0
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
223Informations de copyright
© 2022. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.
Références
Antonious E, Fodelianakis S, Korkakaki E, Kalogerakis N (2015) Biosurfactant production from marine hydrocarbon-degrading consortia and pure bacterial strains using crude oil as carbon source. Front Microbiol 6:1–14. https://doi.org/10.3389/fmicb.2015.00274
doi: 10.3389/fmicb.2015.00274
Arutchelvi JI, Bhaduri S, Uppara PV, Doble M (2008) Mannosylerythritol lipids: a review. J Indian Microb Biotechnol 35:1559–1570
doi: 10.1007/s10295-008-0460-4
Bais HP, Fall R, Vivanco JM (2004) Biocontrol of Bacillus subtilis against infection of Arabidopsis roots by Pseudomonas syringae is facilitated by biofilm formation and surfactin production. Plant Physiol 134(1):307–319. https://doi.org/10.1104/pp.103.028712
doi: 10.1104/pp.103.028712
pubmed: 14684838
pmcid: 316310
Balan SS, Kumar CG, Jayalakshmi S (2017) Aneurinifactin, a new lipopeptide biosurfactant produced by a marine Aneurinibacillus aneurinilyticus SBP-11 isolated from Gulf of Mannar: purification, characterization and its biological evaluation. Microbiol Res 194:1–9. https://doi.org/10.1016/j.micres.2016.10.005
doi: 10.1016/j.micres.2016.10.005
pubmed: 27938857
Bhuvaneswari TV, Turgeon BG, Bauer WD (1980) Early events in the infection of soybean (Glycine max L. Merr ) by Rhizobium japonicum. Plant Physiology 66(709):1027–1031
doi: 10.1104/pp.66.6.1027
Cawoy H, Mariutto M, Henry G, Fisher C, Vasilyeva N, Thonart P (2014) Plant defense stimulation by natural isolates of Bacillus depends on efficient surfactin production. Mol Plant Microb Interact 27:87–100
doi: 10.1094/MPMI-09-13-0262-R
Chaurasia LK, Tamang B, Tirwa RK, Lepcha PL (2020) Influence of biosurfactant producing Bacillus tequilensis LK5. 4 isolate of kinema, a fermented soybean, on seed germination and growth of maize (Zea mays L.). 3 Biotech 10(297):1–12. https://doi.org/10.1007/s13205-020-02281-7
doi: 10.1007/s13205-020-02281-7
Dalili D, Amini M, Faramarzi MA, Fazeli MR, Khoshayand MR, Samadi N (2015) Isolation and structural characterization of Coryxin, a novel cyclic lipopeptide from Corynebacterium xerosis NS5 having emulsifying and anti-biofilm activity. Colloids Surf, B 135:425–432. https://doi.org/10.1016/J.COLSURFB.2015.07.005
doi: 10.1016/J.COLSURFB.2015.07.005
de Lacerda JRM, da Silva TF, Vollú RE, Marques JM, Seldin L (2016) Generally recognized as safe (GRAS) Lactococcus lactis strains associated with Lippia sidoides Cham are able to solubilize/mineralize phosphate. SpringerPlus. https://doi.org/10.1186/s40064-016-2596-4
doi: 10.1186/s40064-016-2596-4
pubmed: 27386277
pmcid: 4917509
Desai JD, Banat IM (1997) Microbial production of surfactants and their commercial potential. Microbiol Mol Biol Rev 61:47–64
pubmed: 9106364
pmcid: 232600
Dlamini B (2017) Downstream purification of surfactin produced by Bacillus subtilis ATCC 21332. Thesis-MEng, Stellenbosch University
Dusane D, Rahman P, Zinjarde S, Venugopalan V, McLean R, Weber M (2010) Quorum sensing; implication on rhamnolipid biosurfactant production. Biotechnol Genet Eng Rev 27:159–184
doi: 10.1080/02648725.2010.10648149
Fernandes PAV, de Arruda IR, dos Santos AFAB, de Araujo AA, Maior AMS, Ximenes EA (2007) Antimicrobial acitivty of surfactants produced by Bacillus R14 against multidrug-resistant bacteria. Braz J Microbiol 38:704–709
doi: 10.1590/S1517-83822007000400022
Frey-Klett P, Garbaye J, Tarkka M (2007) The mycorrhiza helper bacteria revisited. New Phytol 176(1):22–36. https://doi.org/10.1111/j.1469-8137.2007.02191.x
doi: 10.1111/j.1469-8137.2007.02191.x
pubmed: 17803639
Gamalero E, Lingua G, Berta G, Glick BR (2009) Beneficial role of plant growth promoting bacteria and arbuscular mycorrhizal fungi on plant responses to heavy metal stress. Can J Microbiol 55(5):501–514. https://doi.org/10.1139/W09-010
doi: 10.1139/W09-010
pubmed: 19483778
Ghasemi A, Moosavi-nasab M, Setoodeh P, Mesbahi G (2019) Biosurfactant production by lactic acid bacterium Pediococcus dextrinicus SHU1593 Grown on different carbon sources : strain Screening followed by product characterization. Sci Rep 9(March):5287
doi: 10.1038/s41598-019-41589-0
Ghatani K, Tamang B (2017) Assessment of probiotic characteristics of lactic acid bacteria isolated from fermented yak milk products of Sikkim, India: Chhurpi, Shyow, and Khachu. Food Biotechnol 31(3):210–232. https://doi.org/10.1080/08905436.2017.1335212
doi: 10.1080/08905436.2017.1335212
Gudiña EJ, Teixeira JA, Rodrigues LR (2010) Isolation and functional characterization of a biosurfactant produced by Lactobacillus paracasei. Colloids Surf, B 76(1):298–304. https://doi.org/10.1016/j.colsurfb.2009.11.008
doi: 10.1016/j.colsurfb.2009.11.008
Habib S, Ahmad SA, Johari WLW, Shukor MYA, Alias SA, Smykla J, Saruni NH, Razak NSA, Yasid NA (2020) Production of lipopeptide biosurfactant by a hydrocarbon-degrading antarctic rhodococcus. Int J Mol Sci 21(17):1–21. https://doi.org/10.3390/ijms21176138
doi: 10.3390/ijms21176138
Han Q, Wu F, Wang X, Qi H, Shi L, Ren A (2015) The bacterial lipopeptide iturins induce Verticillium dahliae cell death by affecting fungal signalling signalling pathways and mediate plant defence responses involved in pathogen- associated molecular pattern-triggered immunity. Environ Microbiol 17:1166–1188
doi: 10.1111/1462-2920.12538
Jagtap S, Yavankar S, Pardesi K, Chopade B (2010) Production of bioemulsifier by Acinetobacter species isolated from healthy human skin. Indian J Exp Biol 48:70–76
pubmed: 20358869
Janek T, Łukaszewicz M, Krasowska A (2013) Identification and characterization of biosurfactants produced by the Arctic bacterium Pseudomonas putida BD2. Colloids Surf, B 110:379–386. https://doi.org/10.1016/j.colsurfb.2013.05.008
doi: 10.1016/j.colsurfb.2013.05.008
John WC, Ogbonna IO, Gberikon GM, Iheukwumere CC (2021) Evaluation of biosurfactant production potential of Lysinibacillus fusiformis MK559526 isolated from automobile-mechanic-workshop soil. Brazi J Microbiol: [publication of the Brazilian Society for Microbiol] 52(2):663–674. https://doi.org/10.1007/s42770-021-00432-3
doi: 10.1007/s42770-021-00432-3
Kumar S, Stecher G, Tamura K (2016) MEGA7: Molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evolu 33(7):1870–1874. https://doi.org/10.1093/molbev/msw054
doi: 10.1093/molbev/msw054
Li Y, Héloir M-C, Zhang X, Geissler M, Trouvelot S, Jacquens L (2019) Surfactin and fengycin contribute to the protection of a Bacillus subtilis strain against grape downy mildew by both direct effect and defence stimulation. Mol Plant Pathol 20:1037–1050
pubmed: 31104350
pmcid: 6640177
Ma Y, Kong Q, Qin C, Chen Y, Chen Y, Lv R, Zhou G (2016) Identification of lipopeptides in Bacillus megaterium by two-step ultrafiltration and LC–ESI–MS / MS. AMB Express. https://doi.org/10.1186/s13568-016-0252-6
doi: 10.1186/s13568-016-0252-6
pubmed: 27873164
pmcid: 5118231
Monnier N, Cordier M, Dahi A, Santoni V, Guénin S, Clément C, Sarazin C, Penaud A, Dorey S, Cordelier S, Rippa S (2020) Semipurified rhamnolipid mixes protect Brassica napus against Leptosphaeria maculans early infections. Phytopathology 110(4):834–842. https://doi.org/10.1094/PHYTO-07-19-0275-R
doi: 10.1094/PHYTO-07-19-0275-R
pubmed: 31880985
Morais IMC, Cordeiro AL, Teixeira GS, Domingues VS, Nardi RMD, Monteiro AS, Alves RJ, Siqueira EP, Santos VL (2017) Biological and physicochemical properties of biosurfactants produced by Lactobacillus jensenii P 6A and Lactobacillus gasseri P 65. Microb Cell Fact 16:155. https://doi.org/10.1186/s12934-017-0769-7
doi: 10.1186/s12934-017-0769-7
pubmed: 28927409
pmcid: 5605992
Penha RO, Vandenberghe LPS, Faulds C, Soccol VT, Soccol CR (2020) Bacillus lipopeptides as powerful pest control agents for a more sustainable and healthy agriculture: recent studies and innovations. Planta 251(3):70. https://doi.org/10.1007/s00425-020-03357-7
doi: 10.1007/s00425-020-03357-7
pubmed: 32086615
Pornsunthorntawee O, Wongpanit P, Chavadej S, Abe M, Rujiravanit R (2008) Structural and physicochemical characterization of crude biosurfactant produced by Pseudomonas aeruginosa SP4 isolated from petroleum-contaminated soil. Biores Technol 99(6):1589–1595. https://doi.org/10.1016/j.biortech.2007.04.020
doi: 10.1016/j.biortech.2007.04.020
Rahman KSM, Rahman TJ, McClean S, Marchant R, Banat IM (2002) Rhamnolipid biosurfactant production by strains of Pseudomonas aeruginosa using low-cost raw materials. Biotechnol Prog 18(6):1277–1281. https://doi.org/10.1021/bp020071x
doi: 10.1021/bp020071x
pubmed: 12467462
Rodrigues MS, Moreira FS, Cardoso VL, de Resende MM (2017) Soy molasses as a fermentation substrate for the production of biosurfactant using Pseudomonas aeruginosa ATCC 10145. Environ Sci Pollut Res 24(22):18699–18709. https://doi.org/10.1007/s11356-017-9492-5
doi: 10.1007/s11356-017-9492-5
Ron EZ, Rosenberg E (2001) Natural roles of biosurfactants. Environ Microbiol 3(4):229–236. https://doi.org/10.1046/j.1462-2920.2001.00190.x
doi: 10.1046/j.1462-2920.2001.00190.x
pubmed: 11359508
Sałek K, Euston SR (2019) Sustainable microbial biosurfactants and bioemulsifiers for commercial exploitation. Process Biochem 85:143–155. https://doi.org/10.1016/j.procbio.2019.06.027
doi: 10.1016/j.procbio.2019.06.027
Sachdev DP, Cameotra SS (2013) Biosurfactants in agriculture. Appl Microbiol Biotechnol 97(3):1005–1016. https://doi.org/10.1007/s00253-012-4641-8
doi: 10.1007/s00253-012-4641-8
pubmed: 23280539
pmcid: 3555348
Sambrook, Joseph, and Russel, D W (2006). Purification of nucleic acid by extraction with phenol: chloroform. In Cold Spring Harbor Protocols (p. 1).
Satpute SK, Kulkarni GR, Banpurkar AG, Banat IM, Mone NS, Patil RH, Cameotra SS (2016) Biosurfactant/s from Lactobacilli species: properties, challenges and potential biomedical applications. J Basic Microbiol 56(11):1140–1158. https://doi.org/10.1002/jobm.201600143
doi: 10.1002/jobm.201600143
pubmed: 27436796
Sen S, Borah SN, Bora A, Deka S (2017) Production, characterization, and antifungal activity of a biosurfactant produced by Rhodotorula babjevae YS3. Microb Cell Fact 16(95):1–14. https://doi.org/10.1186/s12934-017-0711-z
doi: 10.1186/s12934-017-0711-z
Sharma D, Saharan BS, Chauhan N, Procha S, Lal S (2015) Isolation and functional characterization of novel biosurfactant producer by Enterococcus faecium. Springer plus 4(1):1–14
doi: 10.1186/2193-1801-4-1
Silverstein RM, Webster FX, Kiemle DJ (2005) Spectrometric identification of organic compounds. 7th edn, Wiley, INC
Sriram MI, Kalishwaralal K, Deepak V, Gracerosepat R, Srisakthi K, Gurunathan S (2011) Biofilm inhibition and antimicrobial action of lipopeptide biosurfactant produced by heavy metal tolerant strain Bacillus cereus NK1. Colloids Surf, B 85(2):174–181. https://doi.org/10.1016/j.colsurfb.2011.02.026
doi: 10.1016/j.colsurfb.2011.02.026
Tamang B, Tamang JP (2010) In situ fermentation dynamics during production of gundruk and khalpi, ethnic fermented vegetable products of the Himalayas. Indian J Microbiol 50(October):93–98. https://doi.org/10.1007/s12088-010-0058-1
doi: 10.1007/s12088-010-0058-1
pubmed: 22815579
pmcid: 3396415
Tiwary M, Dubey AK (2018) Characterization of biosurfactant produced by a novel strain of Pseudomonas aeruginosa, isolate ADMT1. J Surfactants Deterg 21(1):113–125. https://doi.org/10.1002/jsde.12021
doi: 10.1002/jsde.12021
Van Hamme JD, Singh A, Ward OP (2006) Physiological aspects Part 1 in a series of papers devoted to surfactants in microbiology and biotechnology. Biotechnol Adv 24:604–620
doi: 10.1016/j.biotechadv.2006.08.001
Vatsa P, Sanchez L, Clement C, Baillieul F, Dorey S (2010) Rhamnolipid biosurfactants as new players in animal and plant defense against microbes. Int J Mol Sci 11:5095–5108
doi: 10.3390/ijms11125095
Velraeds, M M, van der Mei, H C, Reid, G, & Busscher, H J (1996) Inhibition of initial adhesion of uropathogenic Enterococcus faecalis by biosurfactants from Lactobacillus isolates. Appl Environ Microbiol 62(6):1958–1963. http://www.ncbi.nlm.nih.gov/pubmed/8787394
Vos P De, Garrity GM, Jones D, Krieg NR, Ludwig W, Rainey FA, Schleifer K-H, Whitman WB (2009) Bergey’s manual of systematics bacteriology second edition volume three the firmicutes. Springer, Dordrecht Heidelberg, London, New York
Yamamoto S, Shiraishi S, Suzuki S (2015) Are cyclic lipopeptides produced by Bacillus amyloliquefaciens S13–3 responsible for the plant defence response in strawberry against Colletotrichum gloeosporioides? Lett Appl Microbiol 60:379–386
doi: 10.1111/lam.12382
Yilmaz F, Ergene A, Yalcin E, Tan S (2009) Production and characterization of biosurfactants produced by microorganisms isolated from milk factory wastewaters. Environ Technol 30(13):1397–1404. https://doi.org/10.1080/09593330903164528
doi: 10.1080/09593330903164528
pubmed: 20088204
Youssef NH, Duncan KE, Nagle DP, Savage KN, Knapp RM, Mclneney MJ (2004) Comparison of methods to detect biosurfactant production by diverse microorganisms. J Microbiol Methods 56(3):339–347. https://doi.org/10.1016/j.mimet.2003.11.001
doi: 10.1016/j.mimet.2003.11.001
pubmed: 14967225