Spatiotemporal Specific Blocking of Plasmodesmata by Callose Induction.

Callose Induction Plasmodesmata Tissue-specific promoter cals3m

Journal

Methods in molecular biology (Clifton, N.J.)
ISSN: 1940-6029
Titre abrégé: Methods Mol Biol
Pays: United States
ID NLM: 9214969

Informations de publication

Date de publication:
2022
Historique:
entrez: 29 3 2022
pubmed: 30 3 2022
medline: 1 4 2022
Statut: ppublish

Résumé

Plasmodesmata are nanoscale cell wall channels connecting neighboring cells in plants. Intercellular trafficking of molecules via plasmodesmata plays important roles in various developmental processes and stress responses. The turnover of callose, a β-1,3-glucan polysaccharide depositing in the cell wall around plasmodesmata, controls the plasmodesmal permeability and symplasmic transport. Here, we describe a protocol for the spatiotemporally controlled induction of callose synthesis and plasmodesmata closure using the cals3m system. In this system, cals3m, a mutant CALLOSE SYNTHASE 3 (CALS3) gene, is driven by inducible tissue-specific promoters of interest. After appropriate induction by 17-β-estradiol, callose is overproduced within the corresponding specific domains, resulting in temporal closure of plasmodesmata at the cell-cell interfaces. This approach can be used to validate and dissect the function of plasmodesmata-mediated symplasmic communications.

Identifiants

pubmed: 35349155
doi: 10.1007/978-1-0716-2132-5_26
doi:

Substances chimiques

Glucans 0
callose 9064-51-1
Glucosyltransferases EC 2.4.1.-

Types de publication

Journal Article Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

383-391

Informations de copyright

© 2022. The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature.

Références

De Storme N, Geelen D (2014) Callose homeostasis at plasmodesmata: molecular regulators and developmental relevance. Front Plant Sci 5:138. https://doi.org/10.3389/fpls.2014.00138
doi: 10.3389/fpls.2014.00138 pubmed: 24795733 pmcid: 4001042
Zavaliev R, Ueki S, Epel BL, Citovsky V (2011) Biology of callose (beta-1,3-glucan) turnover at plasmodesmata. Protoplasma 248(1):117–130. https://doi.org/10.1007/s00709-010-0247-0
doi: 10.1007/s00709-010-0247-0 pubmed: 21116665
Ellinger D, Voigt CA (2014) Callose biosynthesis in Arabidopsis with a focus on pathogen response: what we have learned within the last decade. Ann Bot 114(6):1349–1358. https://doi.org/10.1093/aob/mcu120
doi: 10.1093/aob/mcu120 pubmed: 24984713 pmcid: 4195556
Chen XY, Kim JY (2009) Callose synthesis in higher plants. Plant Signal Behav 4(6):489–492. https://doi.org/10.4161/psb.4.6.8359
doi: 10.4161/psb.4.6.8359 pubmed: 19816126 pmcid: 2688293
Cui W, Lee JY (2016) Arabidopsis callose synthases CalS1/8 regulate plasmodesmal permeability during stress. Nat Plants 2(5):16034. https://doi.org/10.1038/nplants.2016.34
doi: 10.1038/nplants.2016.34 pubmed: 27243643
Barratt DH, Kolling K, Graf A, Pike M, Calder G, Findlay K, Zeeman SC, Smith AM (2011) Callose synthase GSL7 is necessary for normal phloem transport and inflorescence growth in Arabidopsis. Plant Physiol 155(1):328–341. https://doi.org/10.1104/pp.110.166330
doi: 10.1104/pp.110.166330 pubmed: 21098675
Xie B, Wang X, Zhu M, Zhang Z, Hong Z (2011) CalS7 encodes a callose synthase responsible for callose deposition in the phloem. Plant J 65(1):1–14. https://doi.org/10.1111/j.1365-313X.2010.04399.x
doi: 10.1111/j.1365-313X.2010.04399.x pubmed: 21175885
Vatén A, Dettmer J, Wu S, Stierhof YD, Miyashima S, Yadav SR, Roberts CJ, Campilho A, Bulone V, Lichtenberger R, Lehesranta S, Mahonen AP, Kim JY, Jokitalo E, Sauer N, Scheres B, Nakajima K, Carlsbecker A, Gallagher KL, Helariutta Y (2011) Callose biosynthesis regulates symplastic trafficking during root development. Dev Cell 21(6):1144–1155. https://doi.org/10.1016/j.devcel.2011.10.006
doi: 10.1016/j.devcel.2011.10.006 pubmed: 22172675 pmcid: 22172675
Siligato R, Wang X, Yadav SR, Lehesranta S, Ma GJ, Ursache R, Sevilem I, Zhang J, Gorte M, Prasad K, Wrzaczek M, Heidstra R, Murphy A, Scheres B, Mahonen AP (2016) MultiSite gateway-compatible cell type-specific gene-inducible system for plants. Plant Physiol 170(2):627–641. https://doi.org/10.1104/pp.15.01246
doi: 10.1104/pp.15.01246 pubmed: 26644504
Zuo JR, Niu QW, Chua NH (2000) An estrogen receptor-based transactivator XVE mediates highly inducible gene expression in transgenic plants. Plant J 24(2):265–273. https://doi.org/10.1046/j.1365-313x.2000.00868.x
doi: 10.1046/j.1365-313x.2000.00868.x pubmed: 11069700 pmcid: 11069700
Yadav SR, Yan D, Sevilem I, Helariutta Y (2014) Plasmodesmata-mediated intercellular signaling during plant growth and development. Front Plant Sci 5:44. https://doi.org/10.3389/fpls.2014.00044
doi: 10.3389/fpls.2014.00044 pubmed: 24596574 pmcid: 3925825
Ross-Elliott TJ, Jensen KH, Haaning KS, Wager BM, Knoblauch J, Howell AH, Mullendore DL, Monteith AG, Paultre D, Yan D, Otero S, Bourdon M, Sager R, Lee JY, Helariutta Y, Knoblauch M, Oparka KJ (2017) Phloem unloading in Arabidopsis roots is convective and regulated by the phloem-pole pericycle. elife 6:24125. https://doi.org/10.7554/eLife.24125
doi: 10.7554/eLife.24125
Daum G, Medzihradszky A, Suzaki T, Lohmann JU (2014) A mechanistic framework for noncell autonomous stem cell induction in Arabidopsis. Proc Natl Acad Sci U S A 111(40):14619–14624. https://doi.org/10.1073/pnas.1406446111
doi: 10.1073/pnas.1406446111 pubmed: 25246576 pmcid: 4210042
Gaudioso-Pedraza R, Beck M, Frances L, Kirk P, Ripodas C, Niebel A, Oldroyd GED, Benitez-Alfonso Y, de Carvalho-Niebel F (2018) Callose-regulated symplastic communication coordinates symbiotic root nodule development. Curr Biol 28(22):3562–3577.e6. https://doi.org/10.1016/j.cub.2018.09.031
doi: 10.1016/j.cub.2018.09.031 pubmed: 30416059
Wu S, O’Lexy R, Xu M, Sang Y, Chen X, Yu Q, Gallagher KL (2016) Symplastic signaling instructs cell division, cell expansion, and cell polarity in the ground tissue of Arabidopsis thaliana roots. Proc Natl Acad Sci 113(41):11621–11626. https://doi.org/10.1073/pnas.1610358113
doi: 10.1073/pnas.1610358113 pubmed: 27663740 pmcid: 5068303
Zavaliev R, Epel BL (2015) Imaging callose at plasmodesmata using aniline blue: quantitative confocal microscopy. Methods Mol Biol 1217:105–119. https://doi.org/10.1007/978-1-4939-1523-1_7
doi: 10.1007/978-1-4939-1523-1_7 pubmed: 25287199

Auteurs

Dawei Yan (D)

State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China. ydw2019@henu.edu.cn.

Articles similaires

1.00
Plasmodesmata Endoplasmic Reticulum Arabidopsis Cytokinesis Arabidopsis Proteins

Two codependent routes lead to high-level MRSA.

Abimbola Feyisara Adedeji-Olulana, Katarzyna Wacnik, Lucia Lafage et al.
1.00
Methicillin-Resistant Staphylococcus aureus Penicillin-Binding Proteins Peptidoglycan Bacterial Proteins Anti-Bacterial Agents
Arabidopsis Amorphophallus Plants, Genetically Modified Phylogeny Droughts
1.00
Brassinosteroids Endosperm Signal Transduction Gene Expression Regulation, Plant Arabidopsis

Classifications MeSH