Genome-wide analysis of the Amorphophallus konjac AkCSLA gene family and its functional characterization in drought tolerance of transgenic arabidopsis.
AkCSLA gene family
Amorphophallus konjac
Drought tolerance
Gene expression
Journal
BMC plant biology
ISSN: 1471-2229
Titre abrégé: BMC Plant Biol
Pays: England
ID NLM: 100967807
Informations de publication
Date de publication:
31 Oct 2024
31 Oct 2024
Historique:
received:
08
07
2024
accepted:
24
10
2024
medline:
31
10
2024
pubmed:
31
10
2024
entrez:
31
10
2024
Statut:
epublish
Résumé
Amorphophallus konjac (A. konjac), a perennial tuberous plant, is widely cultivated for its high konjac glucomannan (KGM) content, a heteropolysaccharide with diverse applications. The cellulose synthase-like (CSL) gene family is known to be a group of processive glycan synthases involved in the synthesis of cell-wall polysaccharides and plays an important role in the biological process of KGM. However, in A. konjac the classification, structure, and function of the AkCSLA superfamily have been studied very little. Bioinformatics methods were used to identify the 11 AkCSLA genes from the whole genome of Amorphophallus konjac and to systematically analyze their characteristics, phylogenetic evolution, promoter cis-elements, expression patterns, and subcellular locations. Phylogenetic analysis revealed that the AkCSLA gene family can be divided into three subfamilies (Groups I- III), which have close relationships with Arabidopsis. The promoters of most AkCSLA family members contain MBS elements and ABA response elements. Analysis of expression patterns in different tissues showed that most AkCSLAs are highly expressed in the corms. Notably, PEG6000 induced down-regulation of the expression of most AkCSLAs, including AkCSLA11. Subcellular localization results showed that AkCSLA11 was localized to the plasma membrane, Golgi apparatus and endoplasmic reticulum. Transgenic Arabidopsis experiments demonstrated that overexpression of AkCSLA11 reduced the plant's drought tolerance. This overexpression also inhibited the expression of drought response genes and altered the sugar components of the cell wall. These findings provide new insights into the response mechanisms of A. konjac to drought stress and may offer potential genetic resources for improving crop drought resistance. In conclusion, the study reveals that the AkCSLA11 gene from A. konjac negatively impacts drought tolerance when overexpressed in Arabidopsis. This discovery provides valuable insights into the mechanisms of plant response to drought stress and may guide future research on crop improvement for enhanced resilience.
Sections du résumé
BACKGROUND
BACKGROUND
Amorphophallus konjac (A. konjac), a perennial tuberous plant, is widely cultivated for its high konjac glucomannan (KGM) content, a heteropolysaccharide with diverse applications. The cellulose synthase-like (CSL) gene family is known to be a group of processive glycan synthases involved in the synthesis of cell-wall polysaccharides and plays an important role in the biological process of KGM. However, in A. konjac the classification, structure, and function of the AkCSLA superfamily have been studied very little.
RESULTS
RESULTS
Bioinformatics methods were used to identify the 11 AkCSLA genes from the whole genome of Amorphophallus konjac and to systematically analyze their characteristics, phylogenetic evolution, promoter cis-elements, expression patterns, and subcellular locations. Phylogenetic analysis revealed that the AkCSLA gene family can be divided into three subfamilies (Groups I- III), which have close relationships with Arabidopsis. The promoters of most AkCSLA family members contain MBS elements and ABA response elements. Analysis of expression patterns in different tissues showed that most AkCSLAs are highly expressed in the corms. Notably, PEG6000 induced down-regulation of the expression of most AkCSLAs, including AkCSLA11. Subcellular localization results showed that AkCSLA11 was localized to the plasma membrane, Golgi apparatus and endoplasmic reticulum. Transgenic Arabidopsis experiments demonstrated that overexpression of AkCSLA11 reduced the plant's drought tolerance. This overexpression also inhibited the expression of drought response genes and altered the sugar components of the cell wall. These findings provide new insights into the response mechanisms of A. konjac to drought stress and may offer potential genetic resources for improving crop drought resistance.
CONCLUSION
CONCLUSIONS
In conclusion, the study reveals that the AkCSLA11 gene from A. konjac negatively impacts drought tolerance when overexpressed in Arabidopsis. This discovery provides valuable insights into the mechanisms of plant response to drought stress and may guide future research on crop improvement for enhanced resilience.
Identifiants
pubmed: 39478464
doi: 10.1186/s12870-024-05747-5
pii: 10.1186/s12870-024-05747-5
doi:
Substances chimiques
Plant Proteins
0
Glucosyltransferases
EC 2.4.1.-
cellulose synthase
EC 2.4.1.-
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
1033Subventions
Organisme : National Natural Science Foundation of China
ID : 32460457
Organisme : Yunnan Fundamental Research Projects
ID : 202401AU070002
Organisme : Special Basic Cooperative Research Innovation Programs of Qujing Science and Technology Bureau & Qujing Normal University
ID : KJLH2023YB08
Organisme : Special Basic Cooperative Research Innovation Programs of Qujing Science and Technology Bureau & Qujing Normal University
ID : KJLH2024ZD04
Organisme : Yunnan Provincial Department of Education Science Research Fund Project
ID : 2024J0939
Informations de copyright
© 2024. The Author(s).
Références
Zhao J, Zhang D, Zhao J, Srzednicki G, Borompichaichartkul C, Kanlayanarat S. Morphological and growth characteristics of Amorphophallus muelleri blume-a commercially important konjac species. Acta Hortic. 2010;65:501–8.
Impaprasert R, Borompichaichartkul C, Srzednicki G. A new drying approach to enhance quality of konjac glucomannan extracted from Amorphophallus muelleri. Dry Technol. 2014;32:851–60.
Yanuriati A, Marseno DW, Rochmadi, Harmayani E. Characteristics of glucomannan isolated from fresh tuber of porang (Amorphophallus muelleri Blume). Carbohydr Polym. 2017;156:56–63.
pubmed: 27842852
doi: 10.1016/j.carbpol.2016.08.080
Srzednicki G, Borompichaichartkul C. Konjac glucomannan: production, processing, and functional applications. 1st ed. CRC; 2020.
Gao Y, Zhang Y, Feng C, Chu H, Feng C, Wang H, Wu L, Yin S, Liu C, Chen H, Li Z, Zou Z, Tang L. A chromosome-level genome assembly of Amorphophallus konjac provides insights into konjac glucomannan biosynthesis. Comput Struct Biotechnol J. 2022;20:1002–11.
pubmed: 35242290
pmcid: 8860920
doi: 10.1016/j.csbj.2022.02.009
Sun J, Wu R, Hu B, Jia C, Rong J, Xiong S, Liu R. Effects of konjac glucomannan on oil absorption and safety hazard factor formation of fried battered fish nuggets. Foods. 2022;11:1437.
pubmed: 35627009
pmcid: 9141061
doi: 10.3390/foods11101437
Parry JM. Konjac glucomannan. In food stabilisers, thickeners and gelling agents; blackwell publishing, Ltd.: Oxford,U.K. 2009; 198 – 217.
Takigami S. Konjac mannan. In Handbook of Hydrocolloids, 2nd ed. Phillips GO, Williams PA Eds. Woodhead publishing: Cambridge, U.K., Woodhead publishing series in food science, Technology and Nutrition. 2009; 32:889 – 901.
Dai S, Jiang F, Corke H, Shah NP. Physicochemical and textural properties of mozzarella cheese made with konjac glucomannan as a fat replacer. Food Res Int. 2018;107:691–9.
pubmed: 29580536
doi: 10.1016/j.foodres.2018.02.069
Lu W, Zheng B, Miao S. Improved emulsion stability and modified nutrient release by structuring O/W emulsions using konjac glucomannan. Food Hydrocoll. 2018;81:120–8.
doi: 10.1016/j.foodhyd.2018.02.034
Wang S, Ding L, Chen S, Zhang Y, He J, Li B. Effects of konjac glucomannan on retrogradation of amylose. Foods. 2022;11:26661.
Waresindo WX, Priyanto A, Sihombing YA, Hapidin DA, Edikresnha D, Aimon AH, Suciati T, Khairurrijal K. Konjac glucomannan-based hydrogels with health-promoting effects for potential edible electronics applications: A mini-review. Int J Biol Macromol. 2023;248:125888.
pubmed: 37473898
doi: 10.1016/j.ijbiomac.2023.125888
Wu J, Liu X, Diao Y, Ding Z, Hu Z. Authentication and characterization of a candidate antagonistic bacterium against soft rot of Amorphophallus konjac. Crop Prot. 2012;34:83–7.
doi: 10.1016/j.cropro.2011.12.008
Wu J, Pang L, Zhang X, Lu X, Yin L, Lu G, Cheng J. Early discrimination and prediction of C. fimbriata-infected sweetpotatoes during the asymptomatic period using electronic nose. Foods. 2022;11:1919.
pubmed: 35804741
pmcid: 9265781
doi: 10.3390/foods11131919
Kopecká R, Kameniarová M, Černý M, Brzobohatý B, Novák J. Abiotic stress in crop production. Int J Mol Sci. 2023;24:6603.
pubmed: 37047573
pmcid: 10095105
doi: 10.3390/ijms24076603
Li L, Yang M, Wei W, Zhao J, Yu X, Impaprasert R, Wang J, Liu J, Huang F, Srzednicki G, Yu L. Characteristics of Amorphophallus konjac as indicated by its genome. Sci Rep. 2023;13:22684.
pubmed: 38114626
pmcid: 10730839
doi: 10.1038/s41598-023-49963-9
Zhu JK. Salt and drought stress signal transduction in plants. Annu Rev Plant Biol. 2002;53:247–73.
pubmed: 12221975
pmcid: 3128348
doi: 10.1146/annurev.arplant.53.091401.143329
Finkelstein RR, Gampala SS, Rock CD. Abscisic acid signaling in seeds and seedlings. Plant Cell. 2002;14:S15–45.
pubmed: 12045268
pmcid: 151246
doi: 10.1105/tpc.010441
Wang TJ, Huang S, Zhang A, Guo P, Liu Y, Xu C, Cong W, Liu B, Xu ZY. JMJ17-WRKY40 and HY5-ABI5 modules regulate the expression of ABA-responsive genes in Arabidopsis. New Phytol. 2021;230:567–84.
pubmed: 33423315
doi: 10.1111/nph.17177
Butt HI, Yang Z, Chen E, Zhao G, Gong Q, Yang Z, Zhang X, Li F. Functional characterization of cotton GaMYB62L, a novel R2R3 TF in transgenic Arabidopsis. PLoS ONE. 2017;12:e0170578.
pubmed: 28125637
pmcid: 5268478
doi: 10.1371/journal.pone.0170578
Mao K, Dong Q, Li C, Liu C, Ma F. Genome wide identification and characterization of apple bHLH transcription factors and expression analysis in response to drought and salt stress. Front Plant Sci. 2017;8:480.
pubmed: 28443104
pmcid: 5387082
doi: 10.3389/fpls.2017.00480
Tang Y, Liu K, Zhang J, Li X, Xu K, Zhang Y, Qi J, Yu D, Wang J, Li C. JcDREB2, a physic uut AP2/ERF gene, alters plant growth and salinity stress responses in transgenic Rice. Front Plant Sci. 2017;8:306.
pubmed: 28321231
pmcid: 5337505
doi: 10.3389/fpls.2017.00306
Wu J, Chen J, Wang L, Wang S. Genome-wide investigation of WRKY transcription factors involved in terminal drought stress response in Common Bean. Front Plant Sci. 2017;8:380.
pubmed: 28386267
pmcid: 5362628
Sun H, Hu M, Li J, Chen L, Li M, Zhang S, Zhang X, Yang X. Comprehensive analysis of NAC transcription factors uncovers their roles during fiber development and stress response in cotton. BMC Plant Biol. 2018;18:150.
pubmed: 30041622
pmcid: 6057059
doi: 10.1186/s12870-018-1367-5
Zhu M, Meng X, Cai J, Li G, Dong T, Li Z. Basic leucine zipper transcription factor SlbZIP1 mediates salt and drought stress tolerance in tomato. BMC Plant Biol. 2018;18:83.
pubmed: 29739325
pmcid: 5941487
doi: 10.1186/s12870-018-1299-0
Richmond TA, Somerville CR. The cellulose synthase superfamily. Plant Physiol. 2000;124:495–8.
pubmed: 11027699
pmcid: 1539280
doi: 10.1104/pp.124.2.495
Lombard V, Golaconda Ramulu H, Drula E, Coutinho PM, Henrissat B. The carbohydrate-active enzymes database (CAZy) in 2013. Nucleic Acids Res. 2014;42:490–5.
doi: 10.1093/nar/gkt1178
Fincher GB. Revolutionary times in our understanding of cell wall biosynthesis and remodeling in the grasses. Plant Physiol. 2009;149:27–37.
pubmed: 19126692
pmcid: 2613713
doi: 10.1104/pp.108.130096
Lerouxel O, Cavalier DM, Liepman AH, Keegstra K. Biosynthesis of plant cell wall polysaccharides - a complex process. Curr Opin Plant Biol. 2006;9:621–30.
pubmed: 17011813
doi: 10.1016/j.pbi.2006.09.009
Yin Y, Huang J, Xu Y. The cellulose synthase superfamily in fully sequenced plants and algae. BMC Plant Biol. 2009;9:99.
pubmed: 19646250
pmcid: 3091534
doi: 10.1186/1471-2229-9-99
Davis J, Brandizzi F, Liepman AH, Keegstra K. Arabidopsis mannan synthase CSLA9 and glucan synthase CSLC4 have opposite orientations in the Golgi membrane. Plant J. 2010;64:1028.
pubmed: 21143682
doi: 10.1111/j.1365-313X.2010.04392.x
Hunter CT, Kirienko DH, Sylvester AW, Peter GF, McCarty DR, Koch KE. Cellulose Synthase-Like D1 is integral to normal cell division, expansion, and leaf development in maize. Plant Physiol. 2012;158:708–24.
pubmed: 22123901
doi: 10.1104/pp.111.188466
Hyles J, Vautrin S, Pettolino F, MacMillan C, Stachurski Z, Breen J, Berges H, Wicker T, Spielmeyer W. Repeat-length variation in a wheat cellulose synthase-like gene is associated with altered tiller number and stem cell wall composition. J Exp Bot. 2017;68:1519–29.
pubmed: 28369427
doi: 10.1093/jxb/erx051
Hu H, Zhang R, Dong S, Li Y, Fan C, Wang Y, Xia T, Chen P, Wang L, Feng S, Persson S, Peng L. AtCSLD3 and GhCSLD3 mediate root growth and cell elongation downstream of the ethylene response pathway in Arabidopsis. J Exp Bot. 2018;69:1065–80.
pubmed: 29253184
doi: 10.1093/jxb/erx470
Peng X, Pang H, Abbas M, Yan X, Dai X, Li Y, Li Q. Characterization of cellulose synthase-like D (CSLD) family revealed the involvement of PtrCslD5 in root hair formation in Populus trichocarpa. Sci Rep. 2019;9:1452.
pubmed: 30723218
doi: 10.1038/s41598-018-36529-3
Yuan W, Liu J, Takáč T, Chen H, Li X, Meng J, Tan Y, Ning T, He Z, Yi G, Xu C. Genome-wide identification of banana Csl gene family and their different responses to low temperature between chilling-sensitive and tolerant cultivars. Plants (Basel). 2021;10:122.
pubmed: 33435621
Zhu J, Lee BH, Dellinger M, Cui X, Zhang C, Wu S, Nothnagel EA, Zhu JK. A cellulose synthase-like protein is required for osmotic stress tolerance in Arabidopsis. Plant J. 2010;63:128–40.
pubmed: 20409003
Dhugga KS, Barreiro R, Whitten B, Stecca K, Hazebroek J, Randhawa GS, Dolan M, Kinney AJ, Tomes D, Nichols S, Anderson P. Guar seed beta-mannan synthase is a member of the cellulose synthase super gene family. Science. 2004;303:363–6.
pubmed: 14726589
doi: 10.1126/science.1090908
Suzuki S, Li L, Sun YH, Chiang VL. The cellulose synthase gene superfamily and biochemical functions of xylem-specific cellulose synthase-like genes in Populus trichocarpa. Plant Physiol. 2006;142:1233–45.
pubmed: 16950861
doi: 10.1104/pp.106.086678
Liepman AH, Wilkerson CG, Keegstra K. Expression of cellulose synthase-like (Csl) genes in insect cells reveals that CslA family members encode mannan synthases. Proc Natl Acad Sci U S A. 2005;102:2221–6.
pubmed: 15647349
pmcid: 548565
doi: 10.1073/pnas.0409179102
Liepman AH, Nairn CJ, Willats WG, Sørensen I, Roberts AW, Keegstra K. Functional genomic analysis supports conservation of function among cellulose synthase-like a gene family members and suggests diverse roles of mannans in plants. Plant Physiol. 2007;143:1881–93.
pubmed: 17307900
pmcid: 1851810
doi: 10.1104/pp.106.093989
Gille S, Cheng K, Skinner ME, Liepman AH, Wilkerson CG, Pauly M. Deep sequencing of voodoo lily (Amorphophallus konjac): an approach to identify relevant genes involved in the synthesis of the hemicellulose glucomannan. Planta. 2011;234:515–26.
pubmed: 21538106
pmcid: 3162142
doi: 10.1007/s00425-011-1422-z
Liepman AH, Cavalier DM. The cellulose synthase-like a and cellulose synthase-like C families: recent advances and future perspectives. Front Plant Sci. 2012;3:109.
pubmed: 22654891
pmcid: 3359485
doi: 10.3389/fpls.2012.00109
Goubet F, Barton CJ, Mortimer JC, Yu X, Zhang Z, Miles GP, Richens J, Liepman AH, Seffen K, Dupree P. Cell wall glucomannan in Arabidopsis is synthesised by CSLA glycosyltransferases, and influences the progression of embryogenesis. Plant J. 2009;60:527–38.
pubmed: 19619156
doi: 10.1111/j.1365-313X.2009.03977.x
Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol. 1987;4:406–25.
pubmed: 3447015
Chen C, Chen H, Zhang Y, Thomas HR, Frank MH, He Y, Xia R. TBtools: An integrative toolkit developed for interactive analyses of big biological data. Mol Plant. 2020;13:1194–202.
pubmed: 32585190
doi: 10.1016/j.molp.2020.06.009
Wang K, Niu Y, Wang Q, Liu H, Jin Y, Zhang S. Cloning and evaluation of reference genes for quantitative real-time PCR analysis in Amorphophallus. PeerJ. 2017;5:e3260.
pubmed: 28462052
pmcid: 5408727
doi: 10.7717/peerj.3260
Liu J, Zhou Y, Luo C, Xiang Y, An L. De novo transcriptome sequencing of desert herbaceous Achnatherum splendens (Achnatherum) seedlings and identification of salt tolerance genes. Genes (Basel). 2016;7:12.
pubmed: 27023614
doi: 10.3390/genes7040012
Zou JJ, Li XD, Ratnasekera D, Wang C, Liu WX, Song LF, Zhang WZ, Wu WH. Arabidopsis calcium-dependent protein KINASE8 and CATALASE3 function in abscisic acid-mediated signaling and H2O2 homeostasis in stomatal guard cells under drought stress. Plant Cell. 2015;27:1445–60.
pubmed: 25966761
pmcid: 4456645
doi: 10.1105/tpc.15.00144
Du YT, Zhao MJ, Wang CT, Gao Y, Wang YX, Liu YW, Chen M, Chen J, Zhou YB, Xu ZS, Ma YZ. Identification and characterization of GmMYB118 responses to drought and salt stress. BMC Plant Biol. 2018;18:320.
pubmed: 30509166
pmcid: 6276260
doi: 10.1186/s12870-018-1551-7
Sasidharan R, Voesenek LA, Pierik R. Cell wall modifying proteins mediate plant acclimatization to biotic and abiotic stresses. Crit Rev Plant Sci. 2011;30:548–62.
doi: 10.1080/07352689.2011.615706
Schneider J, Castilho A, Pabst, Altmann F, Gruber C, Strasser R, Gattinger P, Seifert GJ, Steinkellner H. Characterization of plants expressing the human β1,4-galactosyltrasferase gene. Plant Physiol Biochem. 2015;92:39–47.
pubmed: 25900423
pmcid: 4451504
doi: 10.1016/j.plaphy.2015.04.010
Wang M, Li R, Zhao Q. Multi-omics techniques in genetic studies and breeding of forest plants. Forests. 2023;14:1196.
doi: 10.3390/f14061196
Ye S, Zongo AW, Shah BR, Li J, Li B. Konjac glucomannan (KGM), deacetylated KGM (Da-KGM), and degraded KGM derivatives: A special focus on colloidal nutrition. J Agric Food Chem. 2021;69:12921–32.
pubmed: 34713703
doi: 10.1021/acs.jafc.1c03647
Zhang YQ, Xie BJ, Gan X. Advance in the applications of konjac glucomannan and its derivatives. Carbohydr Polym. 2005;60:27–31.
doi: 10.1016/j.carbpol.2004.11.003
Zhang GQ, Xu Q, Bian C, Tsai WC, Yeh CM, Liu KW, Yoshida K, Zhang LS, Chang SB, Chen F, Shi Y, Su YY, Zhang YQ, Chen LJ, Yin Y, Lin M, Huang H, Deng H, Wang ZW, Zhu SL, Zhao X, Deng C, Niu SC, Huang J, Wang M, Liu GH, Yang HJ, Xiao XJ, Hsiao YY, Wu WL, Chen YY, Mitsuda N, Ohme-Takagi M, Luo YB, Van de Peer Y, Liu ZJ. The Dendrobium catenatum Lindl. Genome sequence provides insights into polysaccharide synthase, floral development and adaptive evolution. Sci Rep. 2016;6:19029.
pubmed: 26754549
pmcid: 4709516
doi: 10.1038/srep19029
He C, Wu K, Zhang J, Liu X, Zeng S, Yu Z, Zhang X, Teixeira da Silva JA, Deng R, Tan J, Luo J, Duan J. Cytochemical localization of polysaccharides in dendrobium officinale and the involvement of DoCSLA6 in the synthesis of mannan polysaccharides. Front Plant Sci. 2017;8:173.
pubmed: 28261235
pmcid: 5306395
doi: 10.3389/fpls.2017.00173
Wang J, Li J, Lin W, Deng B, Lin L, Lv X, Hu Q, Liu K, Fatima M, He B, Qiu D, Ma X. Genome-wide identification and adaptive evolution of CesA/Csl superfamily among species with different life forms in Orchidaceae. Front Plant Sci. 2022;13:994679.
pubmed: 36247544
pmcid: 9559377
doi: 10.3389/fpls.2022.994679
Scavuzzo-Duggan T, Varoquaux N, Madera M, Vogel JP, Dahlberg J, Hutmacher R, Belcher M, Ortega J, Coleman-Derr D, Lemaux P, Purdom E, Scheller HV. Cell wall compositions of sorghum bicolor leaves and roots remain relatively constant under drought conditions. Front Plant Sci. 2021;12:747225.
pubmed: 34868130
pmcid: 8632824
doi: 10.3389/fpls.2021.747225
Ganie SA, Ahammed GJ. Dynamics of cell wall structure and related genomic resources for drought tolerance in rice. Plant Cell Rep. 2021;40:437–59.
pubmed: 33389046
doi: 10.1007/s00299-020-02649-2