High Level Electronic Structure Calculation of Molecular Solid-State NMR Shielding Constants.
Journal
Journal of chemical theory and computation
ISSN: 1549-9626
Titre abrégé: J Chem Theory Comput
Pays: United States
ID NLM: 101232704
Informations de publication
Date de publication:
12 Apr 2022
12 Apr 2022
Historique:
pubmed:
31
3
2022
medline:
14
4
2022
entrez:
30
3
2022
Statut:
ppublish
Résumé
In this work, we present a quantum mechanics/molecular mechanics (QM/MM) approach for the computation of solid-state nuclear magnetic resonance (SS-NMR) shielding constants (SCs) for molecular crystals. Besides applying standard-DFT functionals like GGAs (PBE), meta-GGAs (TPSS), and hybrids (B3LYP), we apply a double-hybrid (DSD-PBEP86) functional as well as MP2, using the domain-based local pair natural orbital (DLPNO) formalism, to calculate the NMR SCs of six amino acid crystals. All the electronic structure methods used exhibit good correlation of the NMR shieldings with respect to experimental chemical shifts for both
Identifiants
pubmed: 35353527
doi: 10.1021/acs.jctc.1c01095
pmc: PMC9009078
doi:
Substances chimiques
Amino Acids
0
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
2408-2417Références
J Chem Theory Comput. 2021 Dec 14;17(12):7602-7621
pubmed: 34797677
Phys Chem Chem Phys. 2016 Aug 21;18(31):21686-709
pubmed: 27431490
Acta Crystallogr B. 2002 Jun;58(Pt 3 Pt 1):380-8
pubmed: 12037359
J Chem Theory Comput. 2017 Jul 11;13(7):3198-3207
pubmed: 28590754
J Phys Chem B. 2008 Oct 9;112(40):12827-39
pubmed: 18793012
J Chem Phys. 2013 May 7;138(17):174104
pubmed: 23656111
J Chem Theory Comput. 2019 Mar 12;15(3):1652-1671
pubmed: 30741547
J Chem Phys. 2015 Jul 21;143(3):034108
pubmed: 26203015
J Chem Phys. 2020 Jun 14;152(22):224108
pubmed: 32534543
Cryst Growth Des. 2016 Nov 2;16(11):6479-6493
pubmed: 27829821
J Chem Theory Comput. 2015 Nov 10;11(11):5229-41
pubmed: 26894239
J Chem Theory Comput. 2021 Nov 9;17(11):6876-6885
pubmed: 34637284
Inorg Chem. 2019 Jul 15;58(14):9303-9315
pubmed: 31240911
J Chem Theory Comput. 2012 Feb 14;8(2):498-508
pubmed: 26596600
J Chem Theory Comput. 2020 Nov 10;16(11):6950-6967
pubmed: 32966067
J Chem Phys. 2008 Jun 28;128(24):244111
pubmed: 18601321
J Am Chem Soc. 2001 May 23;123(20):4826-33
pubmed: 11457293
J Chem Theory Comput. 2014 Feb 11;10(2):572-8
pubmed: 26580033
Chemphyschem. 2020 Sep 15;21(18):2075-2083
pubmed: 32691463
J Chem Phys. 2012 Aug 28;137(8):084107
pubmed: 22938218
J Chem Theory Comput. 2015 Jan 13;11(1):132-8
pubmed: 26574211
J Comput Chem. 2013 Oct 15;34(27):2327-44
pubmed: 23983204
J Chem Theory Comput. 2015 Nov 10;11(11):5177-81
pubmed: 26574314
J Chem Phys. 2021 Apr 28;154(16):164110
pubmed: 33940835
J Comput Chem. 2011 May;32(7):1456-65
pubmed: 21370243
Phys Rev Lett. 2009 Jul 10;103(2):026403
pubmed: 19659225
Phys Chem Chem Phys. 2019 Jul 10;21(27):14992-15000
pubmed: 31237586
Chem Rev. 2020 Aug 12;120(15):7065-7103
pubmed: 32574047
J Chem Phys. 2014 Oct 28;141(16):164121
pubmed: 25362286
J Comput Chem. 2020 Apr 5;41(9):922-939
pubmed: 31889331
J Chem Theory Comput. 2018 Sep 11;14(9):4756-4771
pubmed: 30048136
Phys Chem Chem Phys. 2015 Feb 21;17(7):5314-20
pubmed: 25608468
J Chem Theory Comput. 2017 Dec 12;13(12):6043-6051
pubmed: 29139294
J Chem Phys. 2013 Jan 14;138(2):024111
pubmed: 23320672
J Chem Theory Comput. 2018 Feb 13;14(2):619-637
pubmed: 29301077
Phys Chem Chem Phys. 2005 Sep 21;7(18):3297-305
pubmed: 16240044
J Chem Theory Comput. 2020 Feb 11;16(2):931-943
pubmed: 31899647
Phys Chem Chem Phys. 2015 Jul 28;17(28):18834-42
pubmed: 26123927
Phys Rev Lett. 1996 Oct 28;77(18):3865-3868
pubmed: 10062328
J Chem Theory Comput. 2021 Mar 9;17(3):1469-1479
pubmed: 33629849
Magn Reson Chem. 2004 Oct;42 Spec no:S57-67
pubmed: 15366042
Phys Chem Chem Phys. 2013 Jun 7;15(21):8069-80
pubmed: 23503809
J Chem Theory Comput. 2014 Nov 11;10(11):4862-72
pubmed: 26584373
Chemistry. 2004 Oct 25;10(21):5541-52
pubmed: 15457510
J Chem Phys. 2019 Apr 28;150(16):164102
pubmed: 31042903