Discrimination Between Healthy Eyes and Those With Mild Glaucoma Damage Using Hemoglobin Measurements of the Optic Nerve Head.
Journal
Journal of glaucoma
ISSN: 1536-481X
Titre abrégé: J Glaucoma
Pays: United States
ID NLM: 9300903
Informations de publication
Date de publication:
01 07 2022
01 07 2022
Historique:
received:
19
10
2021
accepted:
17
03
2022
pubmed:
31
3
2022
medline:
1
7
2022
entrez:
30
3
2022
Statut:
ppublish
Résumé
The Laguna ONhE, a software that measures the hemoglobin (Hb) concentration of the optic nerve head (ONH) from fundus photographs, demonstrated good accuracy in discriminating healthy eyes from eyes with mild glaucoma. The aim was to evaluate Hb concentration of the optic nerve to distinguish between healthy eyes and eyes with mild glaucoma. Eyes from patients with mild primary open angle glaucoma (MD > -6 dB) (n=58) and from healthy subjects (n=64) were selected. Retinal nerve fiber layer thickness measurements of all eyes were acquired with optical coherence tomography. Optic disc photographs were also obtained, and the images were analyzed using the Laguna ONhE software, which measures the amount of Hb in 24 sectors of the ONH. The software also calculates the Glaucoma Discriminant Function (GDF), an index that expresses the chance of the ONH being compatible with glaucoma. Areas under the receiver operating characteristic curve and sensitivities at fixed specificities of 90% and 95% of each Laguna ONhE parameter were calculated. The mean retinal nerve fiber layer thickness and vertical cup/disc ratio of the control and glaucoma groups were 90.0±10.6 μm versus 66.28±9.85 μm ( P <0.001) and 0.5±0.09 versus 0.65±0.09 ( P <0.001), respectively. Total Hb (67.9±4.45 vs. 62.89±4.89, P <0.001) and GDF (11.57±15.34 vs. -27.67±20.94, P <0.001) were significantly higher in the control group. The Hb concentration was also significantly higher in 21 of the 24 sectors in the control group compared with the glaucoma group ( P <0.05). The GDF had the largest areas under the receiver operating characteristic curve (0.93), with 79.3% sensitivity at a fixed specificity of 95%. Measurements of optic nerve Hb concentration using a colorimetry photographic device demonstrated good accuracy in discriminating healthy eyes from eyes with mild glaucoma. Further studies are need to understand vascular factors implicated in the development of glaucoma.
Identifiants
pubmed: 35353776
doi: 10.1097/IJG.0000000000002026
pii: 00061198-202207000-00011
doi:
Substances chimiques
Hemoglobins
0
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
567-573Informations de copyright
Copyright © 2022 Wolters Kluwer Health, Inc. All rights reserved.
Déclaration de conflit d'intérêts
Disclosure: V.P.C. is a consultant and a member of the speaking bureau for Zeiss, Allergan, Novartis, Alcon, and Iridex. The remaining authors declare no conflict of interest.
Références
Weinreb RN, Tee Khaw P. Primary open-angle glaucoma. Lancet. 2004;36:1711–1720.
Peters D, Bengtsson B, Heijl A. Factors associated with lifetime risk of open-angle glaucoma blindness. Acta Ophthalmol. 2014;92:421–425.
Medeiros FA, Alencar LM, Zangwill LM, et al. Prediction of functional loss in glaucoma from progressive optic disc damage. Arch Ophthalmol. 2009;127:1250–1256.
Hood DC, Kardon RH. A framework for comparing structural and functional measures of glaucomatous damage. Prog Retin Eye Res. 2007;26:688–710.
Harwerth RS, Carter-Dawson L, Smith EL, et al. Neural losses correlated with visual losses in clinical perimetry. Investig Ophthalmol Vis Sci. 2004;45:3152–3160.
Kass MA, Heuer DK, Higginbotham EJ, et al. The ocular hypertension treatment study. Arch Ophthalmol. 2002;120:701–713.
The European Glaucoma Prevention Study (EGPS) Group. Results of the European Glaucoma Prevention Study. Ophthalmology. 2005;112:366–375.
Wollstein G, Schuman JS, Price LL, et al. Optical coherence tomography longitudinal evaluation of retinal nerve fiber layer thickness in glaucoma. Arch Ophthalmol. 2005;123:464–470.
Strouthidis NG, Scott A, Peter NM, et al. Optic disc and visual field progression in ocular hypertensive subjects: detection rates, specificity, and agreement. Investig Ophthalmol Vis Sci. 2006;47:2904–2910.
Leung CKS, Cheung CYL, Weinreb RN, et al. Evaluation of retinal nerve fiber layer progression in glaucoma: a study on optical coherence tomography guided progression analysis. Investig Ophthalmol Vis Sci. 2010;51:217–222.
Medeiros FA, Alencar LM, Zangwill LM, et al. The relationship between intraocular pressure and progressive retinal nerve fiber layer loss in glaucoma. Ophthalmology. 2009;116:1125–1133.
Medeiros FA, Zangwill LM, Bowd C, et al. Influence of disease severity and optic disc size on the diagnostic performance of imaging instruments in glaucoma. Investig Ophthalmol Vis Sci. 2006;47:1008–1015.
Schuman JS, Pedut-Kloizman T, Hertzmark E, et al. Reproducibility of nerve fiber layer thickness measurements using optical coherence tomography. Ophthalmology. 1996;103:1889–1898.
Schuman JS, Hee MR, Puliafito CA, et al. Quantification of nerve fiber layer thickness in normal and glaucomatous eyes using optical coherence tomography: a pliot study. Arch Ophthalmol. 1995;113:586–596.
Bowd C, Weinreb RN, Williams JM, et al. The retinal nerve fiber layer thickness in ocular hypertensive, normal, and glaucomatous eyes with optical coherence tomography. Arch Ophthalmol. 2000;118:22–26.
Zangwill LM, Bowd C, Berry CC, et al. Discriminating between normal and glaucomatous eyes using the Heidelberg Retina Tomograph, GDx Nerve Fiber Analyzer, and Optical Coherence Tomograph. Arch Ophthalmol. 2001;119:985–993.
Williams ZY, Schuman JS, Gamell L, et al. Optical coherence tomography measurement of nerve fiber layer thickness and the likelihood of a visual field defect. Am J Ophthalmol. 2002;134:538–546.
Bowd C, Zangwill LM, Berry CC, et al. Detecting early glaucoma by assessment of retinal nerve fiber layer thickness and visual function. Investig Ophthalmol Vis Sci. 2001;42:1993–2003.
Budenz DL, Fredette MJ, Feuer WJ, et al. Reproducibility of peripapillary retinal nerve fiber thickness measurements with stratus OCT in glaucomatous eyes. Ophthalmology. 2008;115:661–666.
Paunescu LA, Schuman JS, Price LL, et al. Reproducibility of nerve fiber thickness, macular thickness, and optic nerve head measurements using StratusOCT. Investig Ophthalmol Vis Sci. 2004;45:1716–1724.
Gürses-Özden R, Teng C, Vessani R, et al. Macular and retinal nerve fiber layer thickness measurement reproducibility using optical coherence tomography (OCT-3). J Glaucoma. 2004;13:238–244.
DeLeón Ortega JE, Sakata LM, Kakati B, et al. Effect of glaucomatous damage on repeatability of confocal scanning laser ophthalmoscope, scanning laser polarimetry, and optical coherence tomography. Investig Ophthalmol Vis Sci. 2007;48:1156–1163.
Blumenthal EZ, Williams JM, Weinreb RN, et al. Reproducibility of nerve fiber layer thickness measurements by use of optical coherence tomography. Ophthalmology. 2000;107:2278–2282.
Medeiros FA, Zangwill LM, Bowd C, et al. Comparison of the GDx VCC scanning laser polarimeter, HRT II confocal scanning laser ophthalmoscope, and stratus OCT optical coherence tomograph for the detection of glaucoma. Arch Ophthalmol. 2004;122:827–837.
Lu ATH, Wang M, Varma R, et al. Combining nerve fiber layer parameters to optimize glaucoma diagnosis with optical coherence tomography. Ophthalmology. 2008;115:5–7.
Huang D, Swanson Ea, Lin CP, et al. Optical coherence tomography. Science. 1991;254:1178–1181.
Jampel HD, Friedman D, Quigley H, et al. Agreement among glaucoma specialists in assessing progressive disc changes from photographs in open-angle glaucoma patients. Am J Ophthalmol. 2009;147:39–44.
Vessani RM, Gracitelli CPB, Leite M. Diretrizes para utilização do OCT para glaucoma. Soc Bras Glaucoma. 2019;1:1–15.
Han IC, Jaffe GJ. Evaluation of artifacts associated with macular spectral-domain optical coherence tomography. Ophthalmology. 2010;117:1177–1189.
Somfai GM, Salinas HM, Puliafito CA, et al. Evaluation of potential image acquisition pitfalls during optical coherence tomography and their influence on retinal image segmentation. J Biomed Opt. 2007;12:041209.
Melo GB, Libera RD, Barbosa AS, et al. Comparison of optic disk and retinal nerve fiber layer thickness in nonglaucomatous and glaucomatous patients with high myopia. Am J Ophthalmol. 2006;142:858–860.
Arintawati P, Sone T, Akita T, et al. The applicability of ganglion cell complex parameters determined from SD-OCT images to detect glaucomatous eyes. J Glaucoma. 2013;22:713–718.
Song AP, Wu XY, Wang JR, et al. Measurement of retinal thickness in macular region of high myopic eyes using spectral domain OCT. Int J Ophthalmol. 2013;7:122–127.
Medina-Mesa E, Gonzalez-Hernandez M, Sigut J, et al. Estimating the amount of hemoglobin in the neuroretinal rim using color images and OCT. Curr Eye Res. 2016;41:798–805.
de la Rosa MG, Gonzalez-Hernandez M, Sigut J, et al. Measuring hemoglobin levels in the optic nerve head: comparisons with other structural and functional parameters of glaucoma. Investig Ophthalmol Vis Sci. 2013;54:482–489.
Gonzalez-Hernandez M, Gonzalez-Hernandez D, Perez-Barbudo D, et al. Fully automated colorimetric analysis of the optic nerve aided by deep learning and its association with perimetry and OCT for the study of glaucoma. J Clin Med. 2021;10:3231.
Jia Y, Morrison JC, Tokayer J, et al. Quantitative OCT angiography of optic nerve head blood flow. Biomed Opt Express. 2012;3:183–189.
Petrig BL, Riva CE, Hayreh SS. Laser Doppler flowmetry and optic nerve head blood flow. Am J Ophthalmol. 1999;127:413–425.
Hayreh SS. Blood supply of the optic nerve head and its role in optic atrophy, glaucoma, and oedema of the optic disc. Br J Ophthalmol. 1969;53:721–748.
Hayreh SS. Progress in the understanding of the vascular etiology of glaucoma. Curr Opin Ophthalmol. 1994;5:26–35.
Hayreh SS. Posterior ciliary artery circulation in health and disease the weisenfeld lecture. Invest Ophthalmol Vis Sci. 2004;45:749–757.
Pena-Betancor C, Gonzalez-Hernandez M, Fumero-Batista F, et al. Estimation of the relative amount of hemoglobin in the cup and neuroretinal rim using stereoscopic color fundus images. Investig Ophthalmol Vis Sci. 2015;56:1562–1568.
Gonzalez-Hernandez M, Saavedra JS, De La Rosa MG. Relationship between retinal nerve fiber layer thickness and hemoglobin present in the optic nerve head in glaucoma. J Ophthalmol. 2017;2017:2–8.
De La Rosa MG. Measuring hemoglobin levels in the optic nerve head for glaucoma management. Glaucoma Imaging. 2016;54:265–279.
Rodríguez Uña I, Méndez Hernández CD, Sáenz-Francés F, et al. Correlating cup-to-disc ratios measured by HRT-III, SD-OCT and the new color imaging Laguna ONhE procedure. Arch Soc Esp Oftalmol. 2015;90:212–219.
Mendez-Hernandez C, Rodriguez-Uña I, De La Rosa MG, et al. Glaucoma diagnostic capacity of optic nerve head haemoglobin measures compared with spectral domain OCT and HRT III confocal tomography. Acta Ophthalmol. 2016;94:697–704.
Mendez-Hernandez C, Garcia-Feijoo J, Arribas-Pardo P, et al. Reproducibility of optic nerve head hemoglobin measures. J Glaucoma. 2016;25:348–354.
Perucho-González L, Méndez-Hernández CD, De La Rosa MG, et al. Preliminary study of the differences in optic nerve head hemoglobin measures between patients with and without childhood glaucoma. J Pediatr Ophthalmol Strabismus. 2017;54:387–394.
Silva FR, Vidotti VG, Cremasco F, et al. Sensitivity and specificity of machine learning classifiers for glaucoma diagnosis using spectral domain oct and standard automated perimetry. Arq Bras Oftalmol. 2013;76:170–174.
Zhou XH, Obuchowski NA, McClish DK. Statistical Methods in Diagnostic Medicine. New York, NY: Wiley-Interscience; 2002.
Reus NJ, De Graaf M, Lemij HG. Accuracy of GDx VCC, HRT I, and clinical assessment of stereoscopic optic nerve head photographs for diagnosing glaucoma. Br J Ophthalmol. 2007;91:313–318.
Breusegem C, Fieuws S, Stalmans I, et al. Agreement and accuracy of non-expert ophthalmologists in assessing glaucomatous changes in serial stereo optic disc photographs. Ophthalmology. 2011;118:742–746.
Varma R, Steinmann WC, Scott IU. Expert agreement in evaluating the optic disc for glaucoma. Ophthalmology. 1992;99:215–221.
Abrams LS, Scott IU, Spaeth GL, et al. Agreement among optometrists, ophthalmologists, and residents in evaluating the optic disc for glaucoma. Ophthalmology. 1994;101:1662–1667.
Greaney MJ, Hoffman DC, Garway-Heath DF, et al. Comparison of optic nerve imaging methods to distinguish normal eyes from those with glaucoma. Investig Ophthalmol Vis Sci. 2002;43:140–145.
Wollstein G, Garway-Heath DF, Fontana L, et al. Identifying early glaucomatous changes: comparison between expert clinical assessment of optic disc photographs and confocal scanning ophthalmoscopy. Ophthalmology. 2000;107:2272–2277.
Girkin CA, McGwin G, Long C, et al. Subjective and objective optic nerve assessment in African Americans and whites. Investig Ophthalmol Vis Sci. 2004;45:2272–2278.
Olson J, Sharp P, Goatman K, et al. Improving the economic value of photographic screening for optical coherence tomography-detectable macular oedema: a prospective, multicentre, UK study. Health Technol Assess. 2013;17:1–142.
Schmidl D, Garhofer G, Schmetterer L. The complex interaction between ocular perfusion pressure and ocular blood flow—relevance for glaucoma. Exp Eye Res. 2011;93:141–155.
Moore NA, Harris A, Wentz S, et al. Baseline retrobulbar blood flow is associated with both functional and structural glaucomatous progression after 4 years. Br J Ophthalmol. 2017;101:305–308.
Park HYL, Kim JW, Park CK. Choroidal microvasculature dropout is associated with progressive retinal nerve fiber layer thinning in glaucoma with disc hemorrhage. Ophthalmology. 2018;125:1003–1013.
Crittin M, Riva CE. Functional imaging of the human papilla and peripapillary region based on flicker-induced reflectance changes. Neurosci Lett. 2004;360:141–144.
Barella KA, Costa VP, Vidotti VG, et al. Glaucoma diagnostic accuracy of machine learning classifiers using retinal nerve fiber layer and optic nerve data from SD-OCT. J Ophtalmol. 2013;2013:3.
Mendez-Hernandez C, Wang S, Arribas-Pardo P, et al. Diagnostic validity of optic nerve head colorimetric assessment and optical coherence tomography angiography in patients with glaucoma. Br J Ophthalmol. 2021;105:957–963.
Gonzalez-Hernandez D. Segmentation of the optic nerve head based on deep learning to determine its hemoglobin content in normal and glaucomatous subjects. J Clin Exp Opthamol. 2018;9:5–7.
Raza AS, Zhang X, De Moraes CGV, et al. Improving glaucoma detection using spatially correspondent clusters of damage and by combining standard automated perimetry and optical coherence tomography. Investig Ophthalmol Vis Sci. 2014;55:612–624.
Medeiros FA, Lisboa R, Weinreb RN, et al. A combined index of structure and function for staging glaucomatous damage. Arch Ophthalmol. 2012;130:1107–1116.
Vessani RM, Moritz R, Batis L, et al. Comparison of quantitative imaging devices and subjective optic nerve head assessment by general ophthalmologists to differentiate normal from glaucomatous eyes. J Glaucoma. 2009;18:253–261.
DeLeón-Ortega JE, Arthur SN, McGwin G, et al. Discrimination between glaucomatous and nonglaucomatous eyes using quantitative imaging devices and subjective optic nerve head assessment. Investig Ophthalmol Vis Sci. 2006;47:3374–3380.
Amini N, Nowroozizadeh S, Cirineo N, et al. Influence of the disc-fovea angle on limits of RNFL variability and glaucoma discrimination. Invest Ophthalmol Vis Sci. 2014;55:7332–7342.
Lee WJ, Kyeong IN, Kim YK, et al. Diagnostic ability of wide-field retinal nerve fiber layer maps using swept-source optical coherence tomography for detection of preperimetric and early perimetric glaucoma. J Glaucoma. 2017;26:577–585.