A solid-state electrochemiluminescence aptasensor for β-lactoglobulin using Ru-AuNP/GNP/Naf nanocomposite-modified printed sensor.


Journal

Mikrochimica acta
ISSN: 1436-5073
Titre abrégé: Mikrochim Acta
Pays: Austria
ID NLM: 7808782

Informations de publication

Date de publication:
30 03 2022
Historique:
received: 25 10 2021
accepted: 10 03 2022
entrez: 31 3 2022
pubmed: 1 4 2022
medline: 2 4 2022
Statut: epublish

Résumé

An electrochemiluminescence (ECL) aptasensor for the detection of the milk protein allergen β-lactoglobulin (β-LG) using nanocomposite as luminophore was fabricated. The Ru-AuNPs/GNP/Naf complex was formed by combining the Rubpy

Identifiants

pubmed: 35355134
doi: 10.1007/s00604-022-05275-9
pii: 10.1007/s00604-022-05275-9
doi:

Substances chimiques

Lactoglobulins 0
Gold 7440-57-5

Types de publication

Journal Article Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

165

Subventions

Organisme : UNIVERSITI BRUNEI DARUSSALAM AND MINISTRY OF EDUCATION BRUNEI
ID : UBD/RSCH/1.4/FICBF(b)/2018/010

Informations de copyright

© 2022. The Author(s), under exclusive licence to Springer-Verlag GmbH Austria, part of Springer Nature.

Références

Tordesillas L, Berin MC, Sampson HA (2017) Immunology of food allergy. Immunity 47:32–50. https://doi.org/10.1016/j.immuni.2017.07.004
doi: 10.1016/j.immuni.2017.07.004 pubmed: 28723552
Amor-Gutiérrez O, Selvolini G, Fernández-Abedul MT et al (2020) Folding-based electrochemical aptasensor for the determination of β-lactoglobulin on poly-L-lysine modified graphite electrodes. Sensors 20:2349. https://doi.org/10.3390/s20082349
doi: 10.3390/s20082349 pmcid: 7219239
Nehra M, Lettieri M, Dilbaghi N et al (2019) Nano-biosensing platforms for detection of cow’s milk allergens: an overview. Sensors 20:32. https://doi.org/10.3390/s20010032
doi: 10.3390/s20010032 pmcid: 6982970
He S, Li X, Wu Y et al (2018) Highly sensitive detection of bovine β-lactoglobulin with wide linear dynamic range based on platinum nanoparticles probe. J Agric Food Chem 66:11830–11838. https://doi.org/10.1021/acs.jafc.8b04086
doi: 10.1021/acs.jafc.8b04086 pubmed: 30339378
Ivens KO, Baumert JL, Taylor SL (2016) Commercial milk enzyme-linked immunosorbent assay (ELISA) kit reactivities to purified milk proteins and milk-derived ingredients. J Food Sci 81:T1871–T1878. https://doi.org/10.1111/1750-3841.13357
doi: 10.1111/1750-3841.13357 pubmed: 27272960
Galan-Malo P, Pellicer S, Pérez MD et al (2019) Development of a novel duplex lateral flow test for simultaneous detection of casein and β-lactoglobulin in food. Food Chem 293:41–48. https://doi.org/10.1016/j.foodchem.2019.04.039
doi: 10.1016/j.foodchem.2019.04.039 pubmed: 31151629
Xiao-yu K, Jing W, Yan-jun T, et al (2012) HPLC analysis of α-lactalbumin and β-lactoglobulin in bovine milk with C4 and C18 column. J Northeast Agric Univ (English Ed 19:76–82. https://doi.org/10.1016/S1006-8104(13)60026-4
Czerwenka C, Műller L, Lindner W (2010) Detection of the adulteration of water buffalo milk and mozzarella with cow’s milk by liquid chromatography–mass spectrometry analysis of β-lactoglobulin variants. Food Chem 122:901–908. https://doi.org/10.1016/j.foodchem.2010.03.034
doi: 10.1016/j.foodchem.2010.03.034
Billakanti JM, Fee CJ, Lane FR et al (2010) Simultaneous, quantitative detection of five whey proteins in multiple samples by surface plasmon resonance. Int Dairy J 20:96–105. https://doi.org/10.1016/j.idairyj.2009.08.008
doi: 10.1016/j.idairyj.2009.08.008
Nowak-Wegrzyn A, Bloom KA, Sicherer SH et al (2008) Tolerance to extensively heated milk in children with cow’s milk allergy. J Allergy Clin Immunol 122:342-347.e2. https://doi.org/10.1016/j.jaci.2008.05.043
doi: 10.1016/j.jaci.2008.05.043 pubmed: 18620743
Matassan ND, Rizwan M, Mohd-Naim NF, et al (2018) Graphene nanoplatelets-based aptamer biochip for the detection of lipocalin-2. In: 2018 IEEE SENSORS. IEEE, 1–4
Zhai Q, Li J, Wang E (2017) Recent advances based on nanomaterials as electrochemiluminescence probes for the fabrication of sensors. ChemElectroChem 4:1639–1650. https://doi.org/10.1002/celc.201600898
doi: 10.1002/celc.201600898
Li Y, Qi H, Gao Q, Zhang C (2011) Label-free and sensitive electrogenerated chemiluminescence aptasensor for the determination of lysozyme. Biosens Bioelectron 26:2733–2736. https://doi.org/10.1016/j.bios.2010.09.048
doi: 10.1016/j.bios.2010.09.048 pubmed: 21030242
Bozorgzadeh S, Haghighi B, Gorton L (2015) Fabrication of a highly efficient solid state electrochemiluminescence sensor using Ru(bpy)32+ incorporated nanoZnO-MWCNTs-Nafion composite film. Electrochim Acta 164:211–217. https://doi.org/10.1016/j.electacta.2015.02.188
doi: 10.1016/j.electacta.2015.02.188
Moretto LM, Kohls T, Badocco D et al (2010) Electrochemiluminescence of loaded in Nafion Langmuir-Blodgett films: role of the interfacial ultrathin film. J Electroanal Chem 640:35–41. https://doi.org/10.1016/j.jelechem.2009.12.029
doi: 10.1016/j.jelechem.2009.12.029
Bao L, Sun L, Zhang Z-L et al (2011) Energy-level-related response of cathodic electrogenerated-chemiluminescence of self-assembled CdSe/ZnS quantum dot films. J Phys Chem C 115:18822–18828. https://doi.org/10.1021/jp205419z
doi: 10.1021/jp205419z
Zou X, Shang F, Wang S (2017) Electrochemical luminescence determination of hyperin using a sol-gel@graphene luminescent composite film modified electrode for solid phase microextraction. Spectrochim Acta Part A Mol Biomol Spectrosc 173:843–848. https://doi.org/10.1016/j.saa.2016.10.037
doi: 10.1016/j.saa.2016.10.037
Chen C, Wei G, Yao X et al (2018) Ru(bpy)32+/β-cyclodextrin-Au nanoparticles/nanographene functionalized nanocomposites-based thrombin electrochemiluminescence aptasensor. J Solid State Electrochem 22:2059–2066. https://doi.org/10.1007/s10008-018-3910-6
doi: 10.1007/s10008-018-3910-6
Raju CV, Sornambigai M, Kumar SS (2020) Unraveling the reaction mechanism of co-reactant free in-situ cathodic solid state ECL of Ru(bpy)32+ molecule immobilized on Nafion coated nanoporous gold electrode. Electrochim Acta 358:136920. https://doi.org/10.1016/j.electacta.2020.136920
doi: 10.1016/j.electacta.2020.136920
Noor Azam NF, Mohd-Naim NF, Kurup CP, Ahmed MU (2020) Electrochemiluminescence immunosensor for tropomyosin using carbon nanohorns/Nafion/Fe3O4@Pd screen-printed electrodes. Microchim Acta 187:456. https://doi.org/10.1007/s00604-020-04440-2
doi: 10.1007/s00604-020-04440-2
Wei H, Wang E (2011) Electrochemiluminescence of tris(2,2′-bipyridyl)ruthenium and its applications in bioanalysis: a review. Luminescence 26:77–85. https://doi.org/10.1002/bio.1279
doi: 10.1002/bio.1279 pubmed: 21400654
Mao L, Yuan R, Chai Y et al (2010) Multi-walled carbon nanotubes and Ru(bpy)32+/nano-Au nano-sphere as efficient matrixes for a novel solid-state electrochemiluminescence sensor. Talanta 80:1692–1697. https://doi.org/10.1016/j.talanta.2009.10.008
doi: 10.1016/j.talanta.2009.10.008 pubmed: 20152398
Liu X, Zhang J, Yan R et al (2014) Preparation of graphene nanoplatelet–titanate nanotube composite and its advantages over the two single components as biosensor immobilization materials. Biosens Bioelectron 51:76–81. https://doi.org/10.1016/j.bios.2013.07.029
doi: 10.1016/j.bios.2013.07.029 pubmed: 23939473
Noor Azam NF, Mohammad NA, Lim SA, Ahmed MU (2019) A label-free cardiac troponin T electrochemiluminescence immunosensor enhanced by graphene nanoplatelets. Anal Sci Int J Japan Soc Anal Chem 35:973–978. https://doi.org/10.2116/analsci.19P105
doi: 10.2116/analsci.19P105
Rizwan M, Mohd-Naim NF, Keasberry NA, Ahmed MU (2017) A highly sensitive and label-free electrochemiluminescence immunosensor for beta 2-microglobulin. Anal Methods 9:2570–2577. https://doi.org/10.1039/c7ay00263g
doi: 10.1039/c7ay00263g
Huang B, Yao C, Zhang Y, Lu X (2020) A novel label-free solid-state electrochemiluminescence sensor based on the resonance energy transfer from Ru(bpy)32+ to GO for DNA hybridization detection. Talanta 218:121126. https://doi.org/10.1016/j.talanta.2020.121126
doi: 10.1016/j.talanta.2020.121126 pubmed: 32797883
Ke H, Zhang X, Guo W et al (2017) A MWCNTs-Pt nanohybrids-based highly sensitive electrochemiluminescence sensor for flavonoids assay. Talanta 171:1–7. https://doi.org/10.1016/j.talanta.2017.04.045
doi: 10.1016/j.talanta.2017.04.045 pubmed: 28551114
Cao N, Zeng P, Zhao F, Zeng B (2019) Au@SiO2@RuDS nanocomposite based plasmon-enhanced electrochemiluminescence sensor for the highly sensitive detection of glutathione. Talanta 204:402–408. https://doi.org/10.1016/j.talanta.2019.06.030
doi: 10.1016/j.talanta.2019.06.030 pubmed: 31357312
Sun X, Du Y, Dong S, Wang E (2005) Method for effective immobilization of Ru(bpy)32+ on an electrode surface for solid-state electrochemiluminescene detection. Anal Chem 77:8166–8169. https://doi.org/10.1021/ac051476+
doi: 10.1021/ac051476+ pubmed: 16351171
Dong M, Li M, Qi H et al (2015) Electrogenerated chemiluminescence peptide-based biosensing method for cardiac troponin I using peptide-integrating Ru(bpy)3 2+-functionalized gold nanoparticles as nanoprobe. Gold Bull 48:21–29. https://doi.org/10.1007/s13404-015-0156-2
doi: 10.1007/s13404-015-0156-2
Eissa S, Zourob M (2017) In vitro selection of DNA aptamers targeting β-lactoglobulin and their integration in graphene-based biosensor for the detection of milk allergen. Biosens Bioelectron 91:169–174. https://doi.org/10.1016/j.bios.2016.12.020
doi: 10.1016/j.bios.2016.12.020 pubmed: 28006685
Kurup CP, Mohd-Naim NF, Tlili C, Ahmed MU (2021) A highly sensitive label-free aptasensor based on gold nanourchins and carbon nanohorns for the detection of lipocalin-2 (LCN-2). Anal Sci 37:825–831. https://doi.org/10.2116/analsci.20P303
doi: 10.2116/analsci.20P303 pubmed: 33041307
Tah A, Olmos Cordero JM, Weng X, Neethirajan S (2018) Aptamer-based biosensor for food allergen determination using graphene oxide/gold nanocomposite on a paper-assisted analytical device. bioRxiv 343368. https://doi.org/10.1101/343368
Gao J, Chen Z, Mao L et al (2019) Electrochemiluminescent aptasensor based on resonance energy transfer system between CdTe quantum dots and cyanine dyes for the sensitive detection of ochratoxin A. Talanta 199:178–183. https://doi.org/10.1016/j.talanta.2019.02.044
doi: 10.1016/j.talanta.2019.02.044 pubmed: 30952243
Lettieri M, Hosu O, Adumitrachioaie A et al (2020) Beta-lactoglobulin electrochemical detection based with an innovative platform based on composite polymer. Electroanalysis 32:217–225. https://doi.org/10.1002/elan.201900318
doi: 10.1002/elan.201900318
Shi M, Cen Y, Sohail M et al (2018) Aptamer based fluorometric β-lactoglobulin assay based on the use of magnetic nanoparticles and carbon dots. Microchim Acta 185:40. https://doi.org/10.1007/s00604-017-2569-5
doi: 10.1007/s00604-017-2569-5
Clemente APB, Kuang H, Shabana AM et al (2019) Design of an aptamer-amphiphile for the detection of β-lactoglobulin on a liquid crystal interface. Bioconjug Chem 30:2763–2770. https://doi.org/10.1021/acs.bioconjchem.9b00412
doi: 10.1021/acs.bioconjchem.9b00412 pubmed: 31589417
Jia M, Jia B, Liao X et al (2022) A CdSe@CdS quantum dots based electrochemiluminescence aptasensor for sensitive detection of ochratoxin A. Chemosphere 287:131994. https://doi.org/10.1016/j.chemosphere.2021.131994
doi: 10.1016/j.chemosphere.2021.131994 pubmed: 34478969
Gao H, Wang X, Li M et al (2017) Proximity hybridization-regulated electrogenerated chemiluminescence bioassay of α-fetoprotein via target-induced quenching mechanism. Biosens Bioelectron 98:62–67. https://doi.org/10.1016/j.bios.2017.06.042
doi: 10.1016/j.bios.2017.06.042 pubmed: 28649026
Hernandez-Aldave S, Tarat A, McGettrick JD, Bertoncello P (2019) Voltammetric detection of caffeine in beverages at Nafion/graphite nanoplatelets layer-by-layer films. Nanomaterials 9:221. https://doi.org/10.3390/nano9020221
doi: 10.3390/nano9020221 pmcid: 6410159
Suroviec AH (2012) Determining surface coverage of self-assembled monolayers on gold electrodes. Chem Educ 17(3):83–85. https://doi.org/10.1333/s00897122424a
doi: 10.1333/s00897122424a
Qi H, Li M, Dong M et al (2014) Electrogenerated chemiluminescence peptide-based biosensor for the determination of prostate-specific antigen based on target-induced cleavage of peptide. Anal Chem 86:1372–1379. https://doi.org/10.1021/ac402991r
doi: 10.1021/ac402991r pubmed: 24437695
Guo Z, Dong S (2004) Electrogenerated chemiluminescence from Ru(Bpy)32+ ion-exchanged in carbon nanotube/perfluorosulfonated ionomer composite films. Anal Chem 76:2683–2688. https://doi.org/10.1021/ac035276e
doi: 10.1021/ac035276e pubmed: 15144175
Eissa S, Tlili C, Hocine LL, Zourob M (2012) Biosensors and Bioelectronics Electrochemical immunosensor for the milk allergen b-lactoglobulin based on electrografting of organic film on graphene modified screen-printed carbon electrodes. Biosens Bioelectron 38:308–313. https://doi.org/10.1016/j.bios.2012.06.008
doi: 10.1016/j.bios.2012.06.008 pubmed: 22789151
Ruiz-Valdepeñas Montiel V, Campuzano S, Conzuelo F et al (2015) Electrochemical magnetoimmunosensing platform for determination of the milk allergen β-lactoglobulin. Talanta 131:156–162. https://doi.org/10.1016/j.talanta.2014.07.076
doi: 10.1016/j.talanta.2014.07.076 pubmed: 25281087
He S, Li X, Gao J et al (2018) Development of a H 2 O 2 -sensitive quantum dots-based fluorescent sandwich ELISA for sensitive detection of bovine β -lactoglobulin by monoclonal antibody. J Sci Food Agric 98:519–526. https://doi.org/10.1002/jsfa.8489
doi: 10.1002/jsfa.8489 pubmed: 28620918
Vasilescu A, Nunes G, Hayat A et al (2016) Electrochemical affinity biosensors based on disposable screen-printed electrodes for detection of food allergens. Sensors 16:1863. https://doi.org/10.3390/s16111863
doi: 10.3390/s16111863 pmcid: 5134522

Auteurs

Chitra Padmakumari Kurup (CP)

Biosensors and Nanobiotechnology Laboratory, Integrated Science Building, Faculty of Science, Universiti Brunei Darussalam, Jalan Tungku Link, Gadong, 1410, BE, Brunei Darussalam.

Noor Faizah Mohd-Naim (NF)

PAPRSB Institute of Health Sciences, Universiti Brunei Darussalam, Jalan Tungku Link, Gadong, 1410, BE, Brunei Darussalam.

Minhaz Uddin Ahmed (MU)

Biosensors and Nanobiotechnology Laboratory, Integrated Science Building, Faculty of Science, Universiti Brunei Darussalam, Jalan Tungku Link, Gadong, 1410, BE, Brunei Darussalam. minhaz.ahmed@ubd.edu.bn.

Articles similaires

Humans Hyaluronic Acid Osteoarthritis, Hip Female Middle Aged
Humans Middle Aged Female Male Surveys and Questionnaires
Adolescent Child Female Humans Male

Classifications MeSH