A solid-state electrochemiluminescence aptasensor for β-lactoglobulin using Ru-AuNP/GNP/Naf nanocomposite-modified printed sensor.
AuNP
Graphene nanoplatelets
Label-free ECL aptasensor
Milk protein
Rubpy3 2+
β-Lactoglobulin (β-LG)
Journal
Mikrochimica acta
ISSN: 1436-5073
Titre abrégé: Mikrochim Acta
Pays: Austria
ID NLM: 7808782
Informations de publication
Date de publication:
30 03 2022
30 03 2022
Historique:
received:
25
10
2021
accepted:
10
03
2022
entrez:
31
3
2022
pubmed:
1
4
2022
medline:
2
4
2022
Statut:
epublish
Résumé
An electrochemiluminescence (ECL) aptasensor for the detection of the milk protein allergen β-lactoglobulin (β-LG) using nanocomposite as luminophore was fabricated. The Ru-AuNPs/GNP/Naf complex was formed by combining the Rubpy
Identifiants
pubmed: 35355134
doi: 10.1007/s00604-022-05275-9
pii: 10.1007/s00604-022-05275-9
doi:
Substances chimiques
Lactoglobulins
0
Gold
7440-57-5
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
165Subventions
Organisme : UNIVERSITI BRUNEI DARUSSALAM AND MINISTRY OF EDUCATION BRUNEI
ID : UBD/RSCH/1.4/FICBF(b)/2018/010
Informations de copyright
© 2022. The Author(s), under exclusive licence to Springer-Verlag GmbH Austria, part of Springer Nature.
Références
Tordesillas L, Berin MC, Sampson HA (2017) Immunology of food allergy. Immunity 47:32–50. https://doi.org/10.1016/j.immuni.2017.07.004
doi: 10.1016/j.immuni.2017.07.004
pubmed: 28723552
Amor-Gutiérrez O, Selvolini G, Fernández-Abedul MT et al (2020) Folding-based electrochemical aptasensor for the determination of β-lactoglobulin on poly-L-lysine modified graphite electrodes. Sensors 20:2349. https://doi.org/10.3390/s20082349
doi: 10.3390/s20082349
pmcid: 7219239
Nehra M, Lettieri M, Dilbaghi N et al (2019) Nano-biosensing platforms for detection of cow’s milk allergens: an overview. Sensors 20:32. https://doi.org/10.3390/s20010032
doi: 10.3390/s20010032
pmcid: 6982970
He S, Li X, Wu Y et al (2018) Highly sensitive detection of bovine β-lactoglobulin with wide linear dynamic range based on platinum nanoparticles probe. J Agric Food Chem 66:11830–11838. https://doi.org/10.1021/acs.jafc.8b04086
doi: 10.1021/acs.jafc.8b04086
pubmed: 30339378
Ivens KO, Baumert JL, Taylor SL (2016) Commercial milk enzyme-linked immunosorbent assay (ELISA) kit reactivities to purified milk proteins and milk-derived ingredients. J Food Sci 81:T1871–T1878. https://doi.org/10.1111/1750-3841.13357
doi: 10.1111/1750-3841.13357
pubmed: 27272960
Galan-Malo P, Pellicer S, Pérez MD et al (2019) Development of a novel duplex lateral flow test for simultaneous detection of casein and β-lactoglobulin in food. Food Chem 293:41–48. https://doi.org/10.1016/j.foodchem.2019.04.039
doi: 10.1016/j.foodchem.2019.04.039
pubmed: 31151629
Xiao-yu K, Jing W, Yan-jun T, et al (2012) HPLC analysis of α-lactalbumin and β-lactoglobulin in bovine milk with C4 and C18 column. J Northeast Agric Univ (English Ed 19:76–82. https://doi.org/10.1016/S1006-8104(13)60026-4
Czerwenka C, Műller L, Lindner W (2010) Detection of the adulteration of water buffalo milk and mozzarella with cow’s milk by liquid chromatography–mass spectrometry analysis of β-lactoglobulin variants. Food Chem 122:901–908. https://doi.org/10.1016/j.foodchem.2010.03.034
doi: 10.1016/j.foodchem.2010.03.034
Billakanti JM, Fee CJ, Lane FR et al (2010) Simultaneous, quantitative detection of five whey proteins in multiple samples by surface plasmon resonance. Int Dairy J 20:96–105. https://doi.org/10.1016/j.idairyj.2009.08.008
doi: 10.1016/j.idairyj.2009.08.008
Nowak-Wegrzyn A, Bloom KA, Sicherer SH et al (2008) Tolerance to extensively heated milk in children with cow’s milk allergy. J Allergy Clin Immunol 122:342-347.e2. https://doi.org/10.1016/j.jaci.2008.05.043
doi: 10.1016/j.jaci.2008.05.043
pubmed: 18620743
Matassan ND, Rizwan M, Mohd-Naim NF, et al (2018) Graphene nanoplatelets-based aptamer biochip for the detection of lipocalin-2. In: 2018 IEEE SENSORS. IEEE, 1–4
Zhai Q, Li J, Wang E (2017) Recent advances based on nanomaterials as electrochemiluminescence probes for the fabrication of sensors. ChemElectroChem 4:1639–1650. https://doi.org/10.1002/celc.201600898
doi: 10.1002/celc.201600898
Li Y, Qi H, Gao Q, Zhang C (2011) Label-free and sensitive electrogenerated chemiluminescence aptasensor for the determination of lysozyme. Biosens Bioelectron 26:2733–2736. https://doi.org/10.1016/j.bios.2010.09.048
doi: 10.1016/j.bios.2010.09.048
pubmed: 21030242
Bozorgzadeh S, Haghighi B, Gorton L (2015) Fabrication of a highly efficient solid state electrochemiluminescence sensor using Ru(bpy)32+ incorporated nanoZnO-MWCNTs-Nafion composite film. Electrochim Acta 164:211–217. https://doi.org/10.1016/j.electacta.2015.02.188
doi: 10.1016/j.electacta.2015.02.188
Moretto LM, Kohls T, Badocco D et al (2010) Electrochemiluminescence of loaded in Nafion Langmuir-Blodgett films: role of the interfacial ultrathin film. J Electroanal Chem 640:35–41. https://doi.org/10.1016/j.jelechem.2009.12.029
doi: 10.1016/j.jelechem.2009.12.029
Bao L, Sun L, Zhang Z-L et al (2011) Energy-level-related response of cathodic electrogenerated-chemiluminescence of self-assembled CdSe/ZnS quantum dot films. J Phys Chem C 115:18822–18828. https://doi.org/10.1021/jp205419z
doi: 10.1021/jp205419z
Zou X, Shang F, Wang S (2017) Electrochemical luminescence determination of hyperin using a sol-gel@graphene luminescent composite film modified electrode for solid phase microextraction. Spectrochim Acta Part A Mol Biomol Spectrosc 173:843–848. https://doi.org/10.1016/j.saa.2016.10.037
doi: 10.1016/j.saa.2016.10.037
Chen C, Wei G, Yao X et al (2018) Ru(bpy)32+/β-cyclodextrin-Au nanoparticles/nanographene functionalized nanocomposites-based thrombin electrochemiluminescence aptasensor. J Solid State Electrochem 22:2059–2066. https://doi.org/10.1007/s10008-018-3910-6
doi: 10.1007/s10008-018-3910-6
Raju CV, Sornambigai M, Kumar SS (2020) Unraveling the reaction mechanism of co-reactant free in-situ cathodic solid state ECL of Ru(bpy)32+ molecule immobilized on Nafion coated nanoporous gold electrode. Electrochim Acta 358:136920. https://doi.org/10.1016/j.electacta.2020.136920
doi: 10.1016/j.electacta.2020.136920
Noor Azam NF, Mohd-Naim NF, Kurup CP, Ahmed MU (2020) Electrochemiluminescence immunosensor for tropomyosin using carbon nanohorns/Nafion/Fe3O4@Pd screen-printed electrodes. Microchim Acta 187:456. https://doi.org/10.1007/s00604-020-04440-2
doi: 10.1007/s00604-020-04440-2
Wei H, Wang E (2011) Electrochemiluminescence of tris(2,2′-bipyridyl)ruthenium and its applications in bioanalysis: a review. Luminescence 26:77–85. https://doi.org/10.1002/bio.1279
doi: 10.1002/bio.1279
pubmed: 21400654
Mao L, Yuan R, Chai Y et al (2010) Multi-walled carbon nanotubes and Ru(bpy)32+/nano-Au nano-sphere as efficient matrixes for a novel solid-state electrochemiluminescence sensor. Talanta 80:1692–1697. https://doi.org/10.1016/j.talanta.2009.10.008
doi: 10.1016/j.talanta.2009.10.008
pubmed: 20152398
Liu X, Zhang J, Yan R et al (2014) Preparation of graphene nanoplatelet–titanate nanotube composite and its advantages over the two single components as biosensor immobilization materials. Biosens Bioelectron 51:76–81. https://doi.org/10.1016/j.bios.2013.07.029
doi: 10.1016/j.bios.2013.07.029
pubmed: 23939473
Noor Azam NF, Mohammad NA, Lim SA, Ahmed MU (2019) A label-free cardiac troponin T electrochemiluminescence immunosensor enhanced by graphene nanoplatelets. Anal Sci Int J Japan Soc Anal Chem 35:973–978. https://doi.org/10.2116/analsci.19P105
doi: 10.2116/analsci.19P105
Rizwan M, Mohd-Naim NF, Keasberry NA, Ahmed MU (2017) A highly sensitive and label-free electrochemiluminescence immunosensor for beta 2-microglobulin. Anal Methods 9:2570–2577. https://doi.org/10.1039/c7ay00263g
doi: 10.1039/c7ay00263g
Huang B, Yao C, Zhang Y, Lu X (2020) A novel label-free solid-state electrochemiluminescence sensor based on the resonance energy transfer from Ru(bpy)32+ to GO for DNA hybridization detection. Talanta 218:121126. https://doi.org/10.1016/j.talanta.2020.121126
doi: 10.1016/j.talanta.2020.121126
pubmed: 32797883
Ke H, Zhang X, Guo W et al (2017) A MWCNTs-Pt nanohybrids-based highly sensitive electrochemiluminescence sensor for flavonoids assay. Talanta 171:1–7. https://doi.org/10.1016/j.talanta.2017.04.045
doi: 10.1016/j.talanta.2017.04.045
pubmed: 28551114
Cao N, Zeng P, Zhao F, Zeng B (2019) Au@SiO2@RuDS nanocomposite based plasmon-enhanced electrochemiluminescence sensor for the highly sensitive detection of glutathione. Talanta 204:402–408. https://doi.org/10.1016/j.talanta.2019.06.030
doi: 10.1016/j.talanta.2019.06.030
pubmed: 31357312
Sun X, Du Y, Dong S, Wang E (2005) Method for effective immobilization of Ru(bpy)32+ on an electrode surface for solid-state electrochemiluminescene detection. Anal Chem 77:8166–8169. https://doi.org/10.1021/ac051476+
doi: 10.1021/ac051476+
pubmed: 16351171
Dong M, Li M, Qi H et al (2015) Electrogenerated chemiluminescence peptide-based biosensing method for cardiac troponin I using peptide-integrating Ru(bpy)3 2+-functionalized gold nanoparticles as nanoprobe. Gold Bull 48:21–29. https://doi.org/10.1007/s13404-015-0156-2
doi: 10.1007/s13404-015-0156-2
Eissa S, Zourob M (2017) In vitro selection of DNA aptamers targeting β-lactoglobulin and their integration in graphene-based biosensor for the detection of milk allergen. Biosens Bioelectron 91:169–174. https://doi.org/10.1016/j.bios.2016.12.020
doi: 10.1016/j.bios.2016.12.020
pubmed: 28006685
Kurup CP, Mohd-Naim NF, Tlili C, Ahmed MU (2021) A highly sensitive label-free aptasensor based on gold nanourchins and carbon nanohorns for the detection of lipocalin-2 (LCN-2). Anal Sci 37:825–831. https://doi.org/10.2116/analsci.20P303
doi: 10.2116/analsci.20P303
pubmed: 33041307
Tah A, Olmos Cordero JM, Weng X, Neethirajan S (2018) Aptamer-based biosensor for food allergen determination using graphene oxide/gold nanocomposite on a paper-assisted analytical device. bioRxiv 343368. https://doi.org/10.1101/343368
Gao J, Chen Z, Mao L et al (2019) Electrochemiluminescent aptasensor based on resonance energy transfer system between CdTe quantum dots and cyanine dyes for the sensitive detection of ochratoxin A. Talanta 199:178–183. https://doi.org/10.1016/j.talanta.2019.02.044
doi: 10.1016/j.talanta.2019.02.044
pubmed: 30952243
Lettieri M, Hosu O, Adumitrachioaie A et al (2020) Beta-lactoglobulin electrochemical detection based with an innovative platform based on composite polymer. Electroanalysis 32:217–225. https://doi.org/10.1002/elan.201900318
doi: 10.1002/elan.201900318
Shi M, Cen Y, Sohail M et al (2018) Aptamer based fluorometric β-lactoglobulin assay based on the use of magnetic nanoparticles and carbon dots. Microchim Acta 185:40. https://doi.org/10.1007/s00604-017-2569-5
doi: 10.1007/s00604-017-2569-5
Clemente APB, Kuang H, Shabana AM et al (2019) Design of an aptamer-amphiphile for the detection of β-lactoglobulin on a liquid crystal interface. Bioconjug Chem 30:2763–2770. https://doi.org/10.1021/acs.bioconjchem.9b00412
doi: 10.1021/acs.bioconjchem.9b00412
pubmed: 31589417
Jia M, Jia B, Liao X et al (2022) A CdSe@CdS quantum dots based electrochemiluminescence aptasensor for sensitive detection of ochratoxin A. Chemosphere 287:131994. https://doi.org/10.1016/j.chemosphere.2021.131994
doi: 10.1016/j.chemosphere.2021.131994
pubmed: 34478969
Gao H, Wang X, Li M et al (2017) Proximity hybridization-regulated electrogenerated chemiluminescence bioassay of α-fetoprotein via target-induced quenching mechanism. Biosens Bioelectron 98:62–67. https://doi.org/10.1016/j.bios.2017.06.042
doi: 10.1016/j.bios.2017.06.042
pubmed: 28649026
Hernandez-Aldave S, Tarat A, McGettrick JD, Bertoncello P (2019) Voltammetric detection of caffeine in beverages at Nafion/graphite nanoplatelets layer-by-layer films. Nanomaterials 9:221. https://doi.org/10.3390/nano9020221
doi: 10.3390/nano9020221
pmcid: 6410159
Suroviec AH (2012) Determining surface coverage of self-assembled monolayers on gold electrodes. Chem Educ 17(3):83–85. https://doi.org/10.1333/s00897122424a
doi: 10.1333/s00897122424a
Qi H, Li M, Dong M et al (2014) Electrogenerated chemiluminescence peptide-based biosensor for the determination of prostate-specific antigen based on target-induced cleavage of peptide. Anal Chem 86:1372–1379. https://doi.org/10.1021/ac402991r
doi: 10.1021/ac402991r
pubmed: 24437695
Guo Z, Dong S (2004) Electrogenerated chemiluminescence from Ru(Bpy)32+ ion-exchanged in carbon nanotube/perfluorosulfonated ionomer composite films. Anal Chem 76:2683–2688. https://doi.org/10.1021/ac035276e
doi: 10.1021/ac035276e
pubmed: 15144175
Eissa S, Tlili C, Hocine LL, Zourob M (2012) Biosensors and Bioelectronics Electrochemical immunosensor for the milk allergen b-lactoglobulin based on electrografting of organic film on graphene modified screen-printed carbon electrodes. Biosens Bioelectron 38:308–313. https://doi.org/10.1016/j.bios.2012.06.008
doi: 10.1016/j.bios.2012.06.008
pubmed: 22789151
Ruiz-Valdepeñas Montiel V, Campuzano S, Conzuelo F et al (2015) Electrochemical magnetoimmunosensing platform for determination of the milk allergen β-lactoglobulin. Talanta 131:156–162. https://doi.org/10.1016/j.talanta.2014.07.076
doi: 10.1016/j.talanta.2014.07.076
pubmed: 25281087
He S, Li X, Gao J et al (2018) Development of a H 2 O 2 -sensitive quantum dots-based fluorescent sandwich ELISA for sensitive detection of bovine β -lactoglobulin by monoclonal antibody. J Sci Food Agric 98:519–526. https://doi.org/10.1002/jsfa.8489
doi: 10.1002/jsfa.8489
pubmed: 28620918
Vasilescu A, Nunes G, Hayat A et al (2016) Electrochemical affinity biosensors based on disposable screen-printed electrodes for detection of food allergens. Sensors 16:1863. https://doi.org/10.3390/s16111863
doi: 10.3390/s16111863
pmcid: 5134522