Processing of information from the parafascicular nucleus of the thalamus through the basal ganglia.

substantia nigra pars reticulata RRID:AB_10000240 RRID:AB_162543 RRID:AB_2209751 RRID:AB_2301751 RRID:AB_2337244 RRID:AB_2340375 RRID:AB_2535718 RRID:IMSR_EM:01153 RRID:IMSR_JAX:012569 basal ganglia in vivo electrophysiology intralaminar nuclei of the thalamus optogenetics

Journal

Journal of neuroscience research
ISSN: 1097-4547
Titre abrégé: J Neurosci Res
Pays: United States
ID NLM: 7600111

Informations de publication

Date de publication:
06 2022
Historique:
revised: 08 03 2022
received: 13 08 2021
accepted: 15 03 2022
pubmed: 1 4 2022
medline: 23 4 2022
entrez: 31 3 2022
Statut: ppublish

Résumé

Accumulating evidence implicates the parafascicular nucleus of the thalamus (Pf) in basal ganglia (BG)-related functions and pathologies. Despite Pf connectivity with all BG components, most attention is focused on the thalamostriatal system and an integrated view of thalamic information processing in this network is still lacking. Here, we addressed this question by recording the responses elicited by Pf activation in single neurons of the substantia nigra pars reticulata (SNr), the main BG output structure in rodents, in anesthetized mice. We performed optogenetic activation of Pf neurons innervating the striatum, the subthalamic nucleus (STN), or the SNr using virally mediated transcellular delivery of Cre from injection in either target in Rosa26-LoxP-stop-ChR2-EYFP mice to drive channelrhodopsin expression. Photoactivation of Pf neurons connecting the striatum evoked an inhibition often followed by an excitation, likely resulting from the activation of the trans-striatal direct and indirect pathways, respectively. Photoactivation of Pf neurons connecting the SNr or the STN triggered one or two early excitations, suggesting partial functional overlap of trans-subthalamic and direct thalamonigral projections. Excitations were followed in about half of the cases by an inhibition that might reflect recruitment of intranigral inhibitory loops. Finally, global Pf stimulation, electrical or optogenetic, elicited similar complex responses comprising up to four components: one or two short-latency excitations, an inhibition, and a late excitation. These data provide evidence for functional connections between the Pf and different BG components and for convergence of the information processed through these pathways in single SNr neurons, stressing their importance in regulating BG outflow.

Identifiants

pubmed: 35355316
doi: 10.1002/jnr.25046
doi:

Types de publication

Journal Article Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

1370-1385

Informations de copyright

© 2022 Wiley Periodicals LLC.

Références

Abudukeyoumu, N., Hernandez-Flores, T., Garcia-Munoz, M., & Arbuthnott, G. W. (2019). Cholinergic modulation of striatal microcircuits. European Journal of Neuroscience, 49, 604-622.
Bevan, M. D., Francis, C. M., & Bolam, J. P. (1995). The glutamate-enriched cortical and thalamic input to neurons in the subthalamic nucleus of the rat: Convergence with GABA-positive terminals. Journal of Comparative Neurology, 361, 491-511.
Brown, H. D., Baker, P. M., & Ragozzino, M. E. (2010). The parafascicular thalamic nucleus concomitantly influences behavioral flexibility and dorsomedial striatal acetylcholine output in rats. Journal of Neuroscience, 30, 14390-14398.
Brown, J., Pan, W. X., & Dudman, J. T. (2014). The inhibitory microcircuit of the substantia nigra provides feedback gain control of the basal ganglia output. eLife, 2014, 1-25.
Bunney, B. S., Walters, J. R., Roth, R. H., & Aghajanian, G. K. (1973). Dopaminergic neurons: Effect of antipsychotic drugs and amphetamine on single cell activity. Journal of Pharmacology and Experimental Therapeutics, 185, 560-571.
Castle, M., Aymerich, M. S., Sanchez-Escobar, C., Gonzalo, N., Obeso, J. A., & Lanciego, J. L. (2005). Thalamic innervation of the direct and indirect basal ganglia pathways in the rat: Ipsi- and contralateral projections. Journal of Comparative Neurology, 483, 143-153.
Degos, B., Deniau, J. M., Thierry, A. M., Glowinski, J., Pezard, L., & Maurice, N. (2005). Neuroleptic-induced catalepsy: Electrophysiological mechanisms of functional recovery induced by high-frequency stimulation of the subthalamic nucleus. Journal of Neuroscience, 25, 7687-7696.
Deniau, J. M., Hammond, C., Riszk, A., & Féger, J. (1978). Electrophysiological properties of identified output neurons of the rat substantia nigra (pars compacta and pars reticulata): Evidences for the existence of branched neurons. Experimental Brain Research, 32, 409-422.
Deniau, J. M., Kitai, S. T., Donoghue, J. P., & Grofova, I. (1982). Neuronal interactions in the substantia nigra pars reticulata through axon collaterals of the projection neurons. An electrophysiological and morphological study. Experimental Brain Research, 47, 105-113.
Deschênes, M., Bourassa, J., Doan, V. D., & Parent, A. (1996). A single-cell study of the axonal projections arising from the posterior lntralaminar thalamic nuclei in the rat. European Journal of Neuroscience, 8, 329-343.
Ding, J. B., Guzman, J. N., Peterson, J. D., Goldberg, J. A., & Surmeier, D. J. (2010). Thalamic gating of corticostriatal signaling by cholinergic interneurons. Neuron, 67, 294-307.
English, D. F., Ibanez-Sandoval, O., Stark, E., Tecuapetla, F., Buzsáki, G., Deisseroth, K., Tepper, J. M., & Koos, T. (2012). GABAergic circuits mediate the reinforcement-related signals of striatal cholinergic interneurons. Nature Neuroscience, 15, 123-130.
Fasano, A., Daniele, A., & Albanese, A. (2012). Treatment of motor and non-motor features of Parkinson’s disease with deep brain stimulation. Lancet Neurology, 11, 429-442.
Faust, T. W., Assous, M., Shah, F., Tepper, J. M., & Koós, T. (2015). Novel fast adapting interneurons mediate cholinergic-induced fast GABAA inhibitory postsynaptic currents in striatal spiny neurons. European Journal of Neuroscience, 42, 1764-1774.
Faust, T. W., Assous, M., Tepper, J. M., & Koós, T. (2016). Neostriatal GABAergic interneurons mediate cholinergic inhibition of spiny projection neurons. Journal of Neuroscience, 36, 9505-9511.
Féger, J., Bevan, M., & Crossman, A. R. (1994). The projections from the parafascicular thalamic nucleus to the subthalamic nucleus and the striatum arise from separate neuronal populations: A comparison with the corticostriatal and corticosubthalamic efferents in a retrograde fluorescent double-labell. Neuroscience, 60, 125-132.
Gradinaru, V., Zhang, F., Ramakrishnan, C., Mattis, J., Prakash, R., Diester, I., Goshen, I., Thompson, K. R., & Deisseroth, K. (2010). Molecular and cellular approaches for diversifying and extending optogenetics. Cell, 141, 154-165.
Henderson, J. M., Carpenter, K., Cartwright, H., & Halliday, G. M. (2000). Degeneration of the centre median-parafascicular complex in Parkinson’s disease. Annals of Neurology, 47, 345-352.
Higley, M. J., Gittis, A. H., Oldenburg, I. A., Balthasar, N., Seal, R. P., Edwards, R. H., Lowell, B. B., Kreitzer, A. C., & Sabatini, B. L. (2011). Cholinergic interneurons mediate fast VGluT3-dependent glutamatergic transmission in the striatum. PLoS ONE, 6, e19155.
Huerta-Ocampo, I., Mena-Segovia, J., & Bolam, J. P. (2014). Convergence of cortical and thalamic input to direct and indirect pathway medium spiny neurons in the striatum. Brain Structure & Function, 219, 1787-1800.
Ilyas, A., Pizarro, D., Romeo, A. K., Riley, K. O., & Pati, S. (2019). The centromedian nucleus: Anatomy, physiology, and clinical implications. Journal of Clinical Neuroscience, 63, 1-7.
Kerkerian-Le Goff, L., Jouve, L., Melon, C., & Salin, P. (2009). Rationale for targeting the thalamic centre-median parafascicular complex in the surgical treatment of Parkinson’s disease. Parkinsonism & Related Disorders, 15, S167-S170.
Koketsu, D., Chiken, S., Hisatsune, T., Miyachi, S., & Nambu, A. (2021). Elimination of the cortico-subthalamic hyperdirect pathway induces motor hyperactivity in mice. Journal of Neuroscience, 41, 5502-5510.
Lanciego, J. L., Gonzalo, N., Castle, M., Sanchez-Escobar, C., Aymerich, M. S., & Obeso, J. A. (2004). Thalamic innervation of striatal and subthalamic neurons projecting to the rat entopeduncular nucleus. European Journal of Neuroscience, 19, 1267-1277.
Lanciego, J. L., López, I. P., Rico, A. J., Aymerich, M. S., Pérez-Manso, M., Conte, L., Combarro, C., Roda, E., Molina, C., Gonzalo, N., Castle, M., Tuñón, T., Erro, E., & Barroso-Chinea, P. (2009). The search for a role of the caudal intralaminar nuclei in the pathophysiology of Parkinson’s disease. Brain Research Bulletin, 78, 55-59.
Lapper, S. R., & Bolam, J. P. (1992). Input from the frontal cortex and the parafascicular nucleus to cholinergic interneurons in the dorsal striatum of the rat. Neuroscience, 51, 533-545.
Luo, R., Janssen, M. J., Partridge, J. G., & Vicini, S. (2013). Direct and GABA-mediated indirect effects of nicotinic ACh receptor agonists on striatal neurones. Journal of Physiology, 591, 203-217.
Mandelbaum, G., Taranda, J., Haynes, T. M., Hochbaum, D. R., Huang, K. W., Hyun, M., Umadevi Venkataraju, K., Straub, C., Wang, W., Robertson, K., Osten, P., & Sabatini, B. L. (2019). Distinct cortical-thalamic-striatal circuits through the parafascicular nucleus. Neuron, 102, 636-652.e7.
Marini, G., Pianca, L., & Tredici, G. (1999). Descending projections arising from the parafascicular nucleus in rats: Trajectory of fibers, projection pattern and mapping of terminations. Somatosensory & Motor Research, 16, 207-222.
Matsumoto, N., Minamimoto, T., Graybiel, A. M., & Kimura, M. (2001). Neurons in the thalamic CM-pf complex supply striatal neurons with information about behaviorally significant sensory events. Journal of Neurophysiology, 85, 960-976.
Maurice, N., Deniau, J. M., Glowinski, J., & Thierry, A. M. (1999). Relationships between the prefrontal cortex and the basal ganglia in the rat: Physiology of the cortico-nigral circuits. Journal of Neuroscience, 19, 4674-4681.
Nelson, A. B., Hammack, N., Yang, C. F., Shah, N. M., Seal, R. P., & Kreitzer, A. C. (2014). Striatal cholinergic interneurons drive GABA release from dopamine terminals. Neuron, 82, 63-70.
Nishimuta, K., Sasamoto, K., & Ninomiya, Y. (2002). Neural activities in the substantia nigra modulated by stimulation of the orofacial motor cortex and rhythmical jaw movements in the rat. Neuroscience, 113, 915-923.
Paré, D., & Smith, Y. (1996). Thalamic collaterals of corticostriatal axons: Their termination field and synaptic targets in cats. Journal of Comparative Neurology, 372, 551-567.
Paxinos, G., & Franklin, K. B. J. (2001). The mouse brain in stereotaxic coordinates (Harcourt, ed). (2nd ed.). Academic Press.
Pinault, D. (1996). A novel single-cell staining procedure performed in vivo under electrophysiological control: Morpho-functional features of juxtacellularly labeled thalamic cells and other central neurons with biocytin or neurobiotin. Journal of Neuroscience Methods, 65, 113-136.
Royce, G. J. (1983). Cortical neurons with collateral projections to both the caudate nucleus and the centromedian-parafascicular thalamic complex: A fluorescent retrograde double labeling study in the cat. Experimental Brain Research, 50, 157-165.
Sadikot, A. F., Parent, A., & François, C. (1992). Efferent connections of the centromedian and parafascicular nuclei in the squirrel monkey: A PHA-L study of the subcortical projections. Journal of Comparative Neurology, 315, 137-159.
Sadikot, A. F., & Rymar, V. V. (2009). The primate centromedian-parafascicular complex: Anatomical organization with a note on neuromodulation. Brain Research Bulletin, 78, 122-130.
Sano, H., Chiken, S., Hikida, T., Kobayashi, K., & Nambu, A. (2013). Signals through the striatopallidal indirect pathway stop movements by phasic excitation in the substantia nigra. Journal of Neuroscience, 33, 7583-7594.
Sidibé, M., & Smith, Y. (1999). Thalamic inputs to striatal interneurons in monkeys: Synaptic organization and co-localization of calcium binding proteins. Neuroscience, 89, 1189-1208.
Smith, Y., Raju, D., Nanda, B., Pare, J.-F., Galvan, A., & Wichmann, T. (2009). The thalamostriatal systems: Anatomical and functional organization in normal and parkinsonian states. Brain Research Bulletin, 78, 60-68.
Smith, Y., Raju, D. V., Pare, J.-F., & Sidibe, M. (2004). The thalamostriatal system: A highly specific network of the basal ganglia circuitry. Trends in Neurosciences, 27, 520-527.
Stefani, A., Peppe, A., Pierantozzi, M., Galati, S., Moschella, V., Stanzione, P., & Mazzone, P. (2009). Multi-target strategy for parkinsonian patients: The role of deep brain stimulation in the centromedian-parafascicularis complex. Brain Research Bulletin, 78, 113-118.
Tandé, D., Féger, J., Hirsch, E. C., & François, C. (2006). Parafascicular nucleus projection to the extrastriatal basal ganglia in monkeys. Neuroreport, 17, 277-280.
Testini, P., Min, H.-K., Bashir, A., & Lee, K. H. (2016). Deep brain stimulation for Tourette’s syndrome: The case for targeting the thalamic centromedian-parafascicular complex. Frontiers in Neurology, 7, 193.
Tsumori, T., Yokota, S., Lai, H., & Yasui, Y. (2000). Monosynaptic and disynaptic projections from the substantia nigra pars reticulata to the parafascicular thalamic nucleus in the rat. Brain Research, 858, 429-435.
Watson, G. D. R., Hughes, R. N., Petter, E. A., Fallon, I. P., Kim, N., Severino, F. P. U., & Yin, H. H. (2021). Thalamic projections to the subthalamic nucleus contribute to movement initiation and rescue of parkinsonian symptoms. Science Advances, 7, 1-13.
Yamanaka, K., Hori, Y., Minamimoto, T., Yamada, H., Matsumoto, N., Enomoto, K., Aosaki, T., Graybiel, A. M., & Kimura, M. (2018). Roles of centromedian parafascicular nuclei of thalamus and cholinergic interneurons in the dorsal striatum in associative learning of environmental events. Journal of Neural Transmission, 125, 501-513.
Yasukawa, T., Kita, T., Xue, Y., & Kita, H. (2004). Rat intralaminar thalamic nuclei projections to the globus pallidus: A biotinylated dextran amine anterograde tracing study. Journal of Comparative Neurology, 471, 153-167.

Auteurs

Maroua Hanini-Daoud (M)

Aix Marseille Univ, CNRS, IBDM, Marseille, France.

Florence Jaouen (F)

Aix Marseille Univ, CNRS, IBDM, Marseille, France.

Pascal Salin (P)

Aix Marseille Univ, CNRS, IBDM, Marseille, France.

Lydia Kerkerian-Le Goff (L)

Aix Marseille Univ, CNRS, IBDM, Marseille, France.

Nicolas Maurice (N)

Aix Marseille Univ, CNRS, IBDM, Marseille, France.

Articles similaires

Robotic Surgical Procedures Animals Humans Telemedicine Models, Animal

Odour generalisation and detection dog training.

Lyn Caldicott, Thomas W Pike, Helen E Zulch et al.
1.00
Animals Odorants Dogs Generalization, Psychological Smell
Animals TOR Serine-Threonine Kinases Colorectal Neoplasms Colitis Mice
Animals Tail Swine Behavior, Animal Animal Husbandry

Classifications MeSH