High-quality reference genomes of swallowtail butterflies provide insights into their coloration evolution.
Color evolution
High-quality reference genome
Papiliochromes
Swallowtail butterfly tribe
Journal
Zoological research
ISSN: 2095-8137
Titre abrégé: Zool Res
Pays: China
ID NLM: 101697192
Informations de publication
Date de publication:
18 May 2022
18 May 2022
Historique:
entrez:
31
3
2022
pubmed:
1
4
2022
medline:
2
4
2022
Statut:
ppublish
Résumé
Swallowtail butterflies (Papilionidae) are a historically significant butterfly group due to their colorful wing patterns, extensive morphological diversity, and phylogenetically important position as a sister group to all other butterflies and have been widely studied regarding ecological adaption, phylogeny, genetics, and evolution. Notably, they contain a unique class of pigments, i.e., papiliochromes, which contribute to their color diversity and various biological functions such as predator avoidance and mate preference. To date, however, the genomic and genetic basis of their color diversity and papiliochrome origin in a phylogenetic and evolutionary context remain largely unknown. Here, we obtained high-quality reference genomes of 11 swallowtail butterfly species covering all tribes of Papilioninae and Parnassiinae using long-read sequencing technology. Combined with previously published butterfly genomes, we obtained robust phylogenetic relationships among tribes, overcoming the challenges of incomplete lineage sorting (ILS) and gene flow. Comprehensive genomic analyses indicated that the evolution of Papilionidae-specific conserved non-exonic elements (PSCNEs) and transcription factor binding sites (TFBSs) of patterning and transporter/cofactor genes, together with the rapid evolution of transporters/cofactors, likely promoted the origin and evolution of papiliochromes. These findings not only provide novel insights into the genomic basis of color diversity, especially papiliochrome origin in swallowtail butterflies, but also provide important data resources for exploring the evolution, ecology, and conservation of butterflies. 凤蝶(凤蝶科)具有多彩的翅膀图案、丰富的形态多样性、重要的系统发育地位(是所有其他蝴蝶的姐妹类群)等,是历史上备受关注的蝴蝶类群。这一类群在生态适应、系统发育、遗传学和进化等领域都被广泛研究。值得注意的是,它们含有一类独特的色素类型,即凤蝶色素,这有助于颜色多样性的形成和各种生物学功能的发挥,如躲避捕食者和择偶。然而,到目前为止,系统发育和遗传的背景下,它们颜色多样性和凤蝶色素起源的基因组和遗传基础仍未可知。该研究使用长读长测序技术,解析了11种凤蝶的高质量参考基因组。结合之前发表的蝴蝶基因组,克服了不完全谱系分选和基因流等挑战,构建了族水平稳定的系统发育树。系统的基因组分析表明,模式基因和转运体/辅助因子等编码基因的凤蝶科特异的保守非外显子元件和转录因子结合位点的进化,以及转运体/辅因子的快速进化,可能促进了凤蝶色素的起源与进化。这些结果不仅为了解颜色多样性的基因组基础尤其是凤蝶色素的起源提供了新见解,而且为探索蝴蝶的进化、生态学和保护提供了重要的数据资源。.
Autres résumés
Type: Publisher
(chi)
凤蝶(凤蝶科)具有多彩的翅膀图案、丰富的形态多样性、重要的系统发育地位(是所有其他蝴蝶的姐妹类群)等,是历史上备受关注的蝴蝶类群。这一类群在生态适应、系统发育、遗传学和进化等领域都被广泛研究。值得注意的是,它们含有一类独特的色素类型,即凤蝶色素,这有助于颜色多样性的形成和各种生物学功能的发挥,如躲避捕食者和择偶。然而,到目前为止,系统发育和遗传的背景下,它们颜色多样性和凤蝶色素起源的基因组和遗传基础仍未可知。该研究使用长读长测序技术,解析了11种凤蝶的高质量参考基因组。结合之前发表的蝴蝶基因组,克服了不完全谱系分选和基因流等挑战,构建了族水平稳定的系统发育树。系统的基因组分析表明,模式基因和转运体/辅助因子等编码基因的凤蝶科特异的保守非外显子元件和转录因子结合位点的进化,以及转运体/辅因子的快速进化,可能促进了凤蝶色素的起源与进化。这些结果不仅为了解颜色多样性的基因组基础尤其是凤蝶色素的起源提供了新见解,而且为探索蝴蝶的进化、生态学和保护提供了重要的数据资源。.
Identifiants
pubmed: 35355458
doi: 10.24272/j.issn.2095-8137.2021.303
pmc: PMC9113978
pii:
doi:
Banques de données
BioProject
['PRJNA714807, JAGSM[P-Z]000000000']
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
367-379Références
Evolution. 2007 May;61(5):995-1016
pubmed: 17492956
Syst Biol. 2018 Jul 1;67(4):735-740
pubmed: 29514307
Cell Rep. 2015 Feb 17;10(6):910-919
pubmed: 25683714
Nucleic Acids Res. 2020 Jan 8;48(D1):D87-D92
pubmed: 31701148
Nat Commun. 2015 Sep 10;6:8212
pubmed: 26354079
J Mol Biol. 1997 Apr 25;268(1):78-94
pubmed: 9149143
Proc Natl Acad Sci U S A. 2004 Aug 10;101(32):11652-7
pubmed: 15289618
Curr Biol. 2000 May 18;10(10):591-4
pubmed: 10837223
Genomics. 2005 Feb;85(2):153-64
pubmed: 15676274
Genome Biol. 2007;8(2):R15
pubmed: 17274809
Mol Phylogenet Evol. 2007 Jan;42(1):131-56
pubmed: 16919972
Mob DNA. 2015 Jun 02;6:11
pubmed: 26045719
Curr Biol. 2005 Feb 22;15(4):366-70
pubmed: 15723799
Nucleic Acids Res. 2006 Jul 1;34(Web Server issue):W435-9
pubmed: 16845043
Bioessays. 2016 Feb;38(2):140-9
pubmed: 26709836
J Mol Evol. 1999 Jan;48(1):42-8
pubmed: 9873075
Semin Cell Dev Biol. 2009 Feb;20(1):65-71
pubmed: 18977308
Exp Cell Res. 2014 Oct 15;328(1):1-19
pubmed: 25088255
Nat Genet. 2021 May;53(5):742-751
pubmed: 33875864
Nucleic Acids Res. 1994 Apr 11;22(7):1202-7
pubmed: 7909370
Bioinformatics. 2014 May 1;30(9):1312-3
pubmed: 24451623
Development. 2013 Apr;140(7):1385-95
pubmed: 23482485
Genome Res. 2005 Aug;15(8):1034-50
pubmed: 16024819
Genome Biol Evol. 2021 Aug 3;13(8):
pubmed: 34115121
Science. 2019 Jun 21;364(6446):
pubmed: 31221828
Mol Biol Evol. 2019 Dec 1;36(12):2842-2853
pubmed: 31504750
Gigascience. 2019 Nov 1;8(11):
pubmed: 31682256
Dev Biol. 2014 Nov 15;395(2):367-78
pubmed: 25196151
Cell Rep. 2018 Jul 3;24(1):56-65
pubmed: 29972791
Mol Biol Evol. 2007 Aug;24(8):1586-91
pubmed: 17483113
Syst Biol. 2020 Sep 1;69(5):830-847
pubmed: 31977022
Nat Plants. 2020 Mar;6(3):215-222
pubmed: 32094642
Curr Opin Cell Biol. 2019 Aug;59:34-39
pubmed: 30981180
Nucleic Acids Res. 1999 Jan 15;27(2):573-80
pubmed: 9862982
Nucleic Acids Res. 2015 Jul 1;43(W1):W30-8
pubmed: 25943547
Proc Natl Acad Sci U S A. 2021 Sep 14;118(37):
pubmed: 34503999
Curr Biol. 2018 Mar 5;28(5):770-778.e5
pubmed: 29456146
Syst Biol. 2020 Jan 1;69(1):38-60
pubmed: 31062850
Brief Bioinform. 2011 Jan;12(1):41-51
pubmed: 21278375
Genes Cells. 2011 Apr;16(4):331-42
pubmed: 21294818
Nat Rev Genet. 2002 Jun;3(6):442-52
pubmed: 12042771
Trends Genet. 2017 Jul;33(7):436-447
pubmed: 28528721
Genome Res. 2003 Nov;13(11):2498-504
pubmed: 14597658
Science. 2014 Dec 12;346(6215):1320-31
pubmed: 25504713
Commun Biol. 2018 Oct 19;1:169
pubmed: 30374461
Genes Dev. 2005 Aug 15;19(16):1825-39
pubmed: 16103211
Nucleic Acids Res. 2006 Jul 1;34(Web Server issue):W720-4
pubmed: 16845106
Genetics. 2021 Mar 3;217(1):1-9
pubmed: 33683353
Nature. 2020 Nov;587(7833):246-251
pubmed: 33177663
Mol Biol Evol. 2015 Aug;32(8):2085-96
pubmed: 25862140
Proc Natl Acad Sci U S A. 2012 Jul 31;109(31):12632-7
pubmed: 22802635
Mol Biol Evol. 2010 Dec;27(12):2864-78
pubmed: 20624848
Cell Struct Funct. 2016 Jul 9;41(2):61-79
pubmed: 27246931
Ecol Lett. 2012 Mar;15(3):267-77
pubmed: 22251895
Nat Methods. 2020 Feb;17(2):155-158
pubmed: 31819265
Annu Rev Entomol. 1998;43:619-43
pubmed: 15012400
Syst Biol. 2004 Apr;53(2):193-215
pubmed: 15205049
Nucleic Acids Res. 1997 Sep 1;25(17):3389-402
pubmed: 9254694
Mol Biol Evol. 2017 Dec 1;34(12):3292-3298
pubmed: 28961984
Development. 2001 Sep;128(17):3263-8
pubmed: 11546743
J Exp Biol. 2012 Mar 1;215(Pt 5):796-805
pubmed: 22323202
Mol Phylogenet Evol. 2018 May;122:110-115
pubmed: 29421312
Nucleic Acids Res. 2007 Jul;35(Web Server issue):W265-8
pubmed: 17485477
Genome Biol. 2008 Jan 11;9(1):R7
pubmed: 18190707
Nat Genet. 2015 Apr;47(4):405-9
pubmed: 25751626
Nucleic Acids Res. 2017 Dec 15;45(22):12611-12624
pubmed: 29121339
Trends Cell Biol. 1998 Jul;8(7):257-9
pubmed: 9714595
BMC Bioinformatics. 2018 May 8;19(Suppl 6):153
pubmed: 29745866
Bioinformatics. 2004 Nov 1;20(16):2878-9
pubmed: 15145805
Science. 2019 Nov 1;366(6465):594-599
pubmed: 31672890
Cell. 2008 Jul 11;134(1):25-36
pubmed: 18614008
BMC Bioinformatics. 2004 May 14;5:59
pubmed: 15144565