The Isoflavanoid (+)-PTC Regulates Cell-Cycle Progression and Mitotic Spindle Assembly in a Prostate Cancer Cell Line.
PC-3
Pterocarpan
anticancer activity
antimitotic drug
microtubule formation
Journal
Chemistry & biodiversity
ISSN: 1612-1880
Titre abrégé: Chem Biodivers
Pays: Switzerland
ID NLM: 101197449
Informations de publication
Date de publication:
May 2022
May 2022
Historique:
received:
31
01
2022
accepted:
31
03
2022
pubmed:
2
4
2022
medline:
24
5
2022
entrez:
1
4
2022
Statut:
ppublish
Résumé
Prostate cancer is the second most common malignancy in men and the development of effective therapeutic strategies remains challenging when more advanced, androgen-independent or insensitive forms are involved. Accordingly, we have evaluated, using flow cytometry, confocal microscopy and image analysis, the anti-proliferative effects of (+)-2,3,9-trimethoxypterocarpan [(+)-PTC, 1] on relevant human prostate cancer cells as well as its capacity to control mitosis within them. In particular, the studies reported herein reveal that (+)-PTC exerts anti-proliferative activity against the PC-3 cell lines by regulating cell-cycle progression with mitosis being arrested in the prophase or prometaphase. Furthermore, it emerges that treatment of the target cells with this compound results in the formation of monopolar spindles, disorganized centrosomes and extensively disrupted γ-tubulin distributions while centriole replication remains unaffected. Such effects suggest (+)-PTC should be considered as a possible therapy for androgen-insensitive/independent prostate cancer.
Identifiants
pubmed: 35362194
doi: 10.1002/cbdv.202200102
doi:
Substances chimiques
Androgens
0
Tubulin
0
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
e202200102Subventions
Organisme : Experimental Oncology Laboratory (LOE) of the Drug Research and Development Center (NPDM) at Federal University of Ceara (UFC)
Organisme : National Cancer Institute (Bethesda, MD, USA)
Organisme : National Institute of Science and Technology on Photonics Applied to Cell Biology (INFABIC), located at the State University of Campinas
Organisme : Coordenação de Aperfeiçoamento Pessoal de Nível Superior - Brasil (CAPES)
ID : 8887311918/2018-00
Organisme : Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
ID : 2014/50938-8
Organisme : Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
ID : 465699/2011-6
Organisme : CNPq
ID : 440755/2018-2
Organisme : CNPq
ID : 434821/2018-7
Organisme : PRONEX 2011
ID : PROC. 01.01.00/11
Organisme : PRONEX 2011
ID : CI3-0093-00105.01.00/14
Organisme : PRONEX 2011
ID : 303102/2013-6
Informations de copyright
© 2022 Wiley-VHCA AG, Zurich, Switzerland.
Références
D. A. Compton, ‘New Tools for the Antimitotic Toolbox’, Science 1999, 286, 913-914.
C. R. K. Paier, S. S. Maranhão, T. R. Carneiro, L. M. Lima, D. D. Rocha, R. D. S. Santos, K. M. Farias, M. O. Moraes-Filho, C. Pessoa, ‘Natural products as new antimitotic compounds for the anticancer drug development’, Clinics (Sao Paulo), 2018, 73, e813s.
K. N. Bhalla, ‘Microtubule-targeted anticancer agents and apoptosis’, Oncogene 2003, 22, 9075-9086.
T. U. Mayer, T. M. Kapoor, S. J. Haggarty, R. W. King, S. L. Schreiber, T. J. Mitchison, ‘Small Molecule Inhibitor of Mitotic Spindle Biploarity Identified in a Phenotype-Based Screen’, Science 1999, 286, 971-974.
M. Gartner, N. Sunder-Plassmann, J. Seiler, M. Utz, I. Vernos, T. Surrey, A. Giannis, ‘Development and Biological Evaluation of Potent and Specific Inhibitors of Mitotic Kinesin Eg5’, ChemBioChem 2005, 6, 1173-1177.
C. D. Buarque, G. C. Militão, D. J. Lima, L. V. Costa-Lotufo, C. Pessoa, M. O. de Moraes, E. F. Cunha-Junior, E. C. Torres-Santos, C. D. Netto, P. R. Costa, ‘Pterocarpanquinones, aza-pterocarpanquinone and derivatives: synthesis, antineoplastic activity on human malignant cell lines and antileishmanial activity on Leishmania amazonensis’, Bioorg. Med. Chem. 2011, 19, 6885-6891.
K. Farias, R. F. da Costa, A. S. Meira, J. Diniz-Filho, E. M. Bezerra, V. N. Freire, P. Guest, M. Nikahd, X. Ma, M. G. Gardiner, M. G. Banwell, M. D. C. F. de Oliveira, M. O. de Moraes, C. do Ó Pessoa, ‘Antitumor Potential of the Isofalvonoids (+)- and (−)-2,3,9-Trimethoxypterocarpan: Mechanism-of-Action Studies’, ACS Med. Chem. Lett. 2020, 11, 1274-1280.
M. G. van de Schans, J. P. Vincken, T. F. Bovee, A. D. Cervantes, M. J. Logtenberg, H. Gruppen, ‘Structural Changes of 6a-Hydroxy-Pterocarpans Upon Heating Modulate Their Estrogenicity’, J. Agric. Food Chem. 2014, 62, 10475-10484.
J. H. Lee, B. W. Lee, J. H. Kim, T. S. Jeong, M. J. Kim, W. S. Lee, K. H. Park, ‘LDL-Antioxidant Pterocarpans from Roots of Glycine max (L.) Merr’, J Agric. Food Chem. 2006, 54, 2057-2063.
C. Tesauro, P. Fiorani, I. D′Annessa, G. Chillemi, G. Turchi, A. Desideri, ‘Erybraedin C, a natural compound from the plant Bituminaria bituminosa, inhibits both the cleavage and religation activities of human topoisomerase I’, Biochem. J. 2010, 425, 531-539.
L. Jiménez-González, M. Álvarez-Corral, M. Muñoz-Dorado, I. Rodríguez-García, ‘Pterocarpans: interesting natural products with antifungal activity and other biological properties’, Phytochem. Rev. 2008, 7, 125-154.
A. Goel, A. Kumar, A. Raghuvanshi, ‘Synthesis, Stereochemistry, Structural Classification, and Chemical Reactivity of Natural Pterocarpans’, Chem. Rev. 2013, 113, 1614-1640.
M. J. Falcão, Y. B. Pouliquem, M. A. Lima, N. V. Gramosa, L. V. Costa-Lotufo, G. C. Militão, C. Pessoa, M. O. de Moraes, E. R. Silveira, ‘Cytotoxic Flavonoids from Playmiscium floribundum’, J. Nat. Prod. 2005, 68, 423-426.
G. C. Militão, I. N. Dantas, C. Pessoa, M. J. Falcão, E. R. Silveira, M. A. Lima, R. Curi, T. Lima, M. O. Moraes, L. V. Costa-Lotufo, ‘Induction of apoptosis by pterocarpans from Playmiscium floribundum in HL-60 human leukemia cells’, Life Sci. 2006, 78, 2409-2417.
G. C. Militão, D. P. Bezerra, C. Pessoa, M. O. de Moraes, F. A. da Ponte, M. A. S. Lima, E. R. Silveira, L. V. Costa-Lotufo, ‘Comparative cytotoxicity of 2,3,9-trimethoxypterocarpan in leukemia cell lines (HL-60, Jurkat, Molt-4, and K562) and human peropheral blood mononuclear cells’, J. Nat. Med. 2007, 61, 196-199.
G. C. Militão, M. P. Prado, C. Pessoa, M. O. de Moraes, E. R. Silveira, M. A. Lima, P. A. Veloso, L. V. Costa-Lotufo, G. M. Machado-Santelli, ‘Pterocarpans induce tumor cell death through persistent mitotic arrest during prometaphase’, Biochimie 2014, 104, 147-155.
E. Klein, S. DeBonis, B. Thiede, D. A. Skoufias, F. Kozielski, L. Lebeau, ‘New chemical tools for investigating human mitotic kinesin Eg5’, Bioorg. Med. Chem. 2007, 15, 6474-6488.
C. Müller, D. Gross, V. Sarli, M. Gartner, A. Giannis, G. Bernhardt, A. Buschauer, ‘Inhibitors of kinesin Eg5: antiproliferative activity of monastrol analogs against human glioblastoma cells’, Cancer Chemother. Pharmacol. 2007, 59, 157-164.
T. M. Kapoor, T. U. Mayer, M. L. Coughlin, T. J. Mitchison, ‘Probing Spindle Assembly Mechanisms with Monastrol, a Small Molecule Inhibitor of the Mitotic Kinesin, Eg5’, J. Cell Biol. 2000, 150, 975-988.
H. Sung, J. Ferlay, R. L. Siegel, M. Laversanne, I. Soerjomataram, A. Jemal, F. Bray, ‘Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries’, CA Cancer J. Clin. 2021, 71, 209-249.
T. A. Yap, A. D. Smith, R. Ferraldeschi, B. Al-Lazikani, P. Workman, J. S. de Bono, ‘Drug discovery in advanced prostate cancer: translating biology into therapy’, Nat. Rev. Drug Discovery 2016, 15, 699-718.
R. J. Rebello, C. Oing, K. E. Knudsen, S. Loeb, D. C. Johnson, R. E. Reiter, S. Gillessen, T. Van der Kwast, R. G. Bristow, ‘Prostate cancer’, Nat. Rev. Dis. Primers 2021 7, 9.
Prostate Cancer Trialists′ Collaborative Group, ‘Maximum androgen blockade in advanced prostate cancer: an overview of the randomiised trails’, Lancet, 1995, 346, 265-269.
F. Bray, J. Ferlay, I. Soerjomataram, R. L. Siegel, L. A. Torre, A. Jemal, ‘Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries’, Ca-Cancer J. Clin. 2018, 68, 394-424.
C. A. Anderson, S. Roberts, H. Zhang, C. M. Kelly, A. Kendall, C. Lee, J. Gerstenberger, A. B. Koenig, R. Kabeche, A. S. Gladfelter, ‘Ploidy variation in multinucleate cells changes under stress’, Mol. Biol. Cell 2015, 26, 1129-1140.
H. D. Martinez, R. J. Jasavala, I. Hinkson, L. D. Fitzgerald, J. S. Trimmer, H. J. Kung, M. E. Wright, ‘RNA Editing of Androgen Receptor Gene Transcripts in Prostate Cancer Cells’, J. Biol. Chem. 2008, 283, 29938-29949.
S. Marchiani, L. Tamburrino, G. Nesi, M. Paglierani, S. Gelmini, C. Orlando, M. Maggi, G. Forti, E. Baldi, ‘Androgen-responsive and -unresponsive prostate cancer cell lines respond differently to stimuli inducing neuroendocrine differentiation’, Int. J. Androl. 2010, 33, 784-793.
W. Devlies, F. Handle, G. Devos, S. Joniau, F. Claessens, ‘Preclinical Models in Prostate Cancer: Resistance to AR Targeting Therapies in Prostate Cancer’, Cancers (Basel), 2021, 13, 915.
E. A. Nigg, ‘Centrosome aberrations: cause or consequence of cancer progression?’, Nat. Rev. Cancer 2002, 2, 815-825.
H. J. Nam, R. M. Naylor, J. M. van Deursen, ‘Centrosome dynamics as a source of chromosomal instability’, Trends Cell Biol. 2015, 25, 65-73.
L. Le Marchand, ‘Cancer preventive effects of flavonoids - a review’, Biomed. Pharmacother. 2002, 56, 296-301.
J. Matsui, N. Kiyokawa, H. Takenouchi, T. Taguchi, K. Suzuki, Y. Shiozawa, M. Saito, W. R. Tang, Y. U. Katagiri, H. Okita, J. Fujimoto, ‘Dietary biofalvonoids induce apoptosis in human leukemia cells’, Leuk. Res. 2005, 29, 573-581.
L. G. S. Ponte, I. C. B. Pavan, M. C. S. Mancini, L. G. S. da Silva, A. P. Morelli, M. B. Severino, R. M. N. Bezerra, F. M. Simabuco, ‘The Hallmarks of Flavonoids in Cancer’, Molecules 2021, 26, 2029.
D. F. Birt, S. Hendrich, W. Wang, ‘Dietary agents in cancer prevention: flavonoids and isoflavonoids’, Pharmacol. Ther. 2001, 90, 157-177.
H. Vakifahmetoglu, M. Olsson, B. Zhivotovsky, ‘Death through a tragedy: mitotic catastrophe’, Cell Death Differ. 2008, 15, 1153-1162.
S. Doxsey, ‘Re-evaluating centrosome function’, Nat. Rev. Mol. Cell Biol. 2001, 2, 688-698.
E. H. Hinchcliffe, G. Sluder, ‘‘‘It Takes Two to Tango’: understanding how centrosome duplication is regulated throughout the cell cycle’, Genes Dev. 2001, 15, 1167-1181.
H. M. Hut, W. Lemstra, E. H. Blaauw, G. W. Van Cappellen, H. H. Kampinga, O. C. Sibon, ‘Centrosomes Split in the Presence of Imparired DNA Integrity during Mitosis’, Mol. Biol. Cell 2003, 14, 1993-2004.
T. Stearns, L. Evans, M. Kirschner, ‘γ-Tubulin is a highly conserved component of the centrosome’, Cell 1991, 65, 825-836.
K. Crasta, H. H. Lim, T. H. Giddings, M. Winey, U. Surana, ‘Inactivation of Cdh1 by synergistic action of Cdk1 and polo kinase is necessary for proper assembly of the mitotic spindle’, Nat. Cell Biol. 2008, 10, 665-675.
R. Uzbekov, I. Kireyev, C. Prigent, ‘Centrosome separation: respective role of microtubules and actin filaments’, Biol. Cell 2002, 94, 275-288.
T. Mosmann, ‘Rapid colorimetric assay for cellular growth and survival: Application to proliferation and cytotoxicity assays’, J. Immunol. Meth. 1983, 65, 55-63.
I. Giaever, C. R. Keese, ‘A morphological biosensor for mammalian cells’, Nature 1993, 366, 591-592.
S. Bolte, F. P. Cordelières, ‘A guided tour into subcellular colocalization analysis in light microscopy’, J. Microsc. 2006, 224, 213-232.