Activity-induced interactions and cooperation of artificial microswimmers in one-dimensional environments.


Journal

Nature communications
ISSN: 2041-1723
Titre abrégé: Nat Commun
Pays: England
ID NLM: 101528555

Informations de publication

Date de publication:
01 04 2022
Historique:
received: 23 02 2021
accepted: 14 03 2022
entrez: 2 4 2022
pubmed: 3 4 2022
medline: 6 4 2022
Statut: epublish

Résumé

Cooperative motion in biological microswimmers is crucial for their survival as it facilitates adhesion to surfaces, formation of hierarchical colonies, efficient motion, and enhanced access to nutrients. Here, we confine synthetic, catalytic microswimmers along one-dimensional paths and demonstrate that they too show a variety of cooperative behaviours. We find that their speed increases with the number of swimmers, and that the activity induces a preferred distance between swimmers. Using a minimal model, we ascribe this behavior to an effective activity-induced potential that stems from a competition between chemical and hydrodynamic coupling. These interactions further induce active self-assembly into trains where swimmers move at a well-separated, stable distance with respect to each other, as well as compact chains that can elongate, break-up, become immobilized and remobilized. We identify the crucial role that environment morphology and swimmer directionality play on these highly dynamic chain behaviors. These activity-induced interactions open the door toward exploiting cooperation for increasing the efficiency of microswimmer motion, with temporal and spatial control, thereby enabling them to perform intricate tasks inside complex environments.

Identifiants

pubmed: 35365633
doi: 10.1038/s41467-022-29430-1
pii: 10.1038/s41467-022-29430-1
pmc: PMC8976030
doi:

Types de publication

Journal Article Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

1772

Informations de copyright

© 2022. The Author(s).

Références

Elgeti, J., Winkler, R. G. & Gompper, G. Physics of microswimmers – single particle motion and collective behavior. Rep. Prog. Phys. 78, 056601 (2015).
pubmed: 25919479 doi: 10.1088/0034-4885/78/5/056601
Moore, H., Dvoráková, K., Jenkins, N. & Breed, W. Exceptional sperm cooperation in the wood mouse. Nature 418, 174–177 (2002).
pubmed: 12110888 doi: 10.1038/nature00832
Solari, C. A., Kessler, J. O. & Goldstein, R. E. Motility, mixing, and multicellularity. Genet Program Evol. Mach. 8, 115–129 (2007).
doi: 10.1007/s10710-007-9029-7
Archetti, M. & Pienta, K. J. Cooperation among cancer cells: applying game theory to cancer. Nat. Rev. Cancer 19, 110–117 (2019).
pubmed: 30470829 doi: 10.1038/s41568-018-0083-7
Lee, C. K. et al. Social cooperativity of bacteria during reversible surface attachment in young biofilms: a quantitative comparison of pseudomonas aeruginosa pa14 and pao1. mBio 11, e02644–19 (2020).
dos Santos, A. L. S. et al. What are the advantages of living in a community? A microbial biofilm perspective. Mem. Inst. Oswaldo Cruz 113, e180212 (2018).
pubmed: 30066753 pmcid: 6057313 doi: 10.1590/0074-02760180212
Hall-Stoodley, L., Costerton, J. W. & Stoodley, P. Bacterial biofilms: from the natural environment to infectious diseases. Nat. Rev. Microbiol 2, 95–108 (2004).
pubmed: 15040259 doi: 10.1038/nrmicro821
Be’er, A. & Ariel, G. A statistical physics view of swarming bacteria. Mov. Ecol. 7, 9 (2019).
pubmed: 30923619 pmcid: 6419441 doi: 10.1186/s40462-019-0153-9
Be’er, A. et al. A phase diagram for bacterial swarming. Commun. Phys. 3, 66 (2020).
doi: 10.1038/s42005-020-0327-1
Drescher, K., Dunkel, J., Cisneros, L. H., Ganguly, S. & Goldstein, R. E. Fluid dynamics and noise in bacterial cell?cell and cell?surface scattering. PNAS 108, 10940–10945 (2011).
pubmed: 21690349 pmcid: 3131322 doi: 10.1073/pnas.1019079108
Miller, M. B. & Bassler, B. L. Quorum sensing in bacteria. Ann. Rev. Micro 55, 165–199 (2001).
doi: 10.1146/annurev.micro.55.1.165
Katuri, J., Ma, X., Stanton, M. M. & Sánchez, S. Designing micro- and nanoswimmers for specific applications. Acc. Chem. Res. 50, 2–11 (2017).
pubmed: 27809479 doi: 10.1021/acs.accounts.6b00386
Volpe, G., Buttinoni, I., Vogt, D., Kümmerer, H.-J. & Bechinger, C. Microswimmers in patterned environments. Soft Matter 7, 8810–8815 (2011).
doi: 10.1039/c1sm05960b
Takagi, D., Palacci, J., Braunschweig, A. B., Shelley, M. J. & Zhang, J. Hydrodynamic capture of microswimmers into sphere-bound orbits. Soft Matter 10, 1784 (2014).
pubmed: 24800268 doi: 10.1039/c3sm52815d
Das, S. et al. Boundaries can steer active janus spheres. Nat. Comm. 6, 8999 (2015).
doi: 10.1038/ncomms9999
Simmchen, J. et al. Topographical pathways guide chemical microswimmers. Nat. Comm. 7, 10598 (2016).
doi: 10.1038/ncomms10598
Yu, H. et al. Confined catalytic janus swimmers in a crowded channel: geometry-driven rectification transients and directional locking. Small 12, 5882–5890 (2016).
pubmed: 27628242 doi: 10.1002/smll.201602039
Liu, C., Zhou, C., Wang, W. & Zhang, H. P. Bimetallic microswimmers speed up in confining channels. Phys. Rev. Lett. 117, 198001 (2016).
pubmed: 27858454 doi: 10.1103/PhysRevLett.117.198001
Brown, A. T. et al. Swimming in a crystal. Soft Matter 12, 113 (2016).
doi: 10.1039/C5SM01831E
Wykes, M. S. D. et al. Guiding microscale swimmers using teardrop-shaped posts. Soft Matter 13, 4681–4688 (2017).
doi: 10.1039/C7SM00203C
Katuri, J., Caballero, D., Voituriez, R., Samitier, J. & Sánchez, S. Directed flow of micromotors through alignment interactions with micropatterned ratchets. ACS nano 12, 7282–7291 (2018).
pubmed: 29949338 doi: 10.1021/acsnano.8b03494
Mijalkov, M. & Volpe, G. Sorting of chiral microswimmers. Soft Matter 9, 6376–6381 (2013).
doi: 10.1039/c3sm27923e
Jin, C., Vachier, J., Bandyopadhyay, S., Macharashvili, T. & Maass, C. C. Fine balance of chemotactic and hydrodynamic torques: when microswimmers orbit a pillar just once. Phys. Rev. E 110, 040601(R) (2020).
Wang, W. et al. Acoustic propulsion of nanorod motors inside living cells. Angew. Chem. Int Ed. Engl. 53, 3201–3204 (2014).
pubmed: 24677393 pmcid: 4069361 doi: 10.1002/anie.201309629
Schamel, D. et al. Nanopropellers and their actuation in complex viscoelastic media. ACS Nano 8, 8794–8801 (2014).
pubmed: 24911046 doi: 10.1021/nn502360t
Walker, D., Käsdorf, B. T., Jeong, H.-H., Lieleg, O. & Fischer, P. Enzymatically active biomimetic micropropellers for the penetration of mucin gels. Sci. Adv. 1, e1500501 (2015).
pubmed: 26824056 pmcid: 4730841 doi: 10.1126/sciadv.1500501
García, M. et al. Micromotor-based lab-on-chip immunoassays. Nanoscale 5, 1325–1331 (2013).
pubmed: 23123833 doi: 10.1039/C2NR32400H
Restrepo-Pérez, L., Soler, L., Martínez-Cisneros, C., Sánchez, S. & Schmidt, O. G. Biofunctionalized self-propelled micromotors as an alternative on-chip concentrating system. Lab a Chip 14, 2914 (2014).
doi: 10.1039/C4LC00439F
Patra, D. et al. Intelligent, self-powered, drug delivery systems. Nanoscale 5, 1273–1283 (2013).
pubmed: 23166050 doi: 10.1039/C2NR32600K
Gao, W. et al. Artificial micromotors in the mouse’s stomach: a step toward in vivo use of synthetic motors. ACS Nano 9, 117?123 (2015).
doi: 10.1021/nn507097k
Bechinger, C. et al. Active particles in complex and crowded environments. Rev. Mod. Phys. 88, 045006 (2016).
doi: 10.1103/RevModPhys.88.045006
Ebbens, S. J. Active colloids: Progress and challenges towards realising autonomous applications. Curr. Opin. Colloid Interface Sci. 21, 14–23 (2016).
doi: 10.1016/j.cocis.2015.10.003
Gao, W. et al. Seawater-driven magnesium based janus micromotors for environmental remediation. Nanoscale 5, 4696–4700 (2013).
pubmed: 23640547 doi: 10.1039/c3nr01458d
Ni, S., Marini, E., Buttinoni, I., Wolf, H. & Isa, L. Hybrid colloidal microswimmers through sequential capillary assembly. Soft Matter 13, 4252–4259 (2017).
pubmed: 28573270 doi: 10.1039/C7SM00443E
Zion, M. Y. B., Modin, A., Caba, Y. & Chaikin, P. M. Multiple-robot drug delivery strategy through coordinated teams of microswimmers. Appl. Phys. Lett. 105, 083705 (2014).
doi: 10.1063/1.4893695
Tsang, A. C. H., Demir, E., Ding, Y. & Pak, O. S. Roads to smart artificial microswimmers. Adv. Intell. Syst. 2, 1900137 (2020).
doi: 10.1002/aisy.201900137
Theurkauff, I., Cottin-Bizonne, C., Palacci, J., Ybert, C. & Bocquet, L. Dynamic clustering in active colloidal suspensions with chemical signaling. Phys. Rev. Lett. 108, 268303 (2012).
pubmed: 23005020 doi: 10.1103/PhysRevLett.108.268303
Buttinoni, I. et al. Dynamical clustering and phase separation in suspensions of self-propelled colloidal particles. Phys. Rev. Lett. 110, 238301 (2013).
pubmed: 25167534 doi: 10.1103/PhysRevLett.110.238301
Palacci, J., Sacanna, S., Steinberg, A. P., Pine, D. J. & Chaikin, P. M. Living crystals of light-activated colloidal surfers. Science 339, 936–940 (2013).
pubmed: 23371555 doi: 10.1126/science.1230020
Wysocki, A., Winkler, R. G. & Gompper, G. Cooperative motion of active brownian spheres in three-dimensional dense suspensions. EPL 105, 48004 (2014).
doi: 10.1209/0295-5075/105/48004
Stenhammar, J., Marenduzzo, D., Allen, R. J. & Cates, M. Phase behaviour of active brownian particles: the role of dimensionality. Soft Matter 10, 1489–1499 (2014).
pubmed: 24651885 doi: 10.1039/C3SM52813H
Ben Zion, M. Y., Caba, Y., Modin, A. & Chaikin, P. M. Cooperation in a fluid swarm of fuel-free micro-swimmers. Nat. Commun. 13, 184 (2022).
pubmed: 35013335 pmcid: 8748659 doi: 10.1038/s41467-021-27870-9
Aubret, A., Youssef, M., Sacanna, S. & Palacci, J. Targeted assembly and synchronization of self-spinning microgears. Nat. Phys. 14, 1114–1118 (2018).
doi: 10.1038/s41567-018-0227-4
Wang, Z., Wang, Z., Li, J., Tian, C. & Wang, Y. Active colloidal molecules assembled via selective and directional bonds. Nat. Comm. 11, 2670 (2020).
doi: 10.1038/s41467-020-16506-z
Guzmán-Lastra, F., Kaiser, A. & Löwen, H. Fission and fusion scenarios for magnetic microswimmer clusters. Nat. Commun. 7, 13519 (2016).
pubmed: 27874006 pmcid: 5121419 doi: 10.1038/ncomms13519
Ketzetzi, S., de Graaf, J., Doherty, R. P. & Kraft, D. J. Slip length dependent propulsion speed of catalytic colloidal swimmers near walls. Phys. Rev. Lett. 124, 048002 (2020).
pubmed: 32058791 doi: 10.1103/PhysRevLett.124.048002
Ketzetzi, S., de Graaf, J. & Kraft, D. J. Diffusion-based height analysis reveals robust microswimmer-wall separation. Phys. Rev. Lett. 125, 238001 (2020).
pubmed: 33337216 doi: 10.1103/PhysRevLett.125.238001
Golestanian, R., Liverpool, T. B. & Ajdari, A. Propulsion of a molecular machine by asymmetric distribution of reaction products. Phys. Rev. Lett. 94, 220801 (2005).
pubmed: 16090376 doi: 10.1103/PhysRevLett.94.220801
Spagnolie, S. E., Moreno-Flores, G. R., Bartolo, D. & Lauga, E. Geometric capture and escape of a microswimmer colliding with an obstacle. Soft Matter 11, 3396 (2015).
pubmed: 25800455 doi: 10.1039/C4SM02785J
Kuron, M., Philipp Stärk, aC. H. & de Graaf, J. Hydrodynamic mobility reversal of squirmers near flat and curved surfaces. Soft Matter 15, 5908 (2019).
pubmed: 31282522 doi: 10.1039/C9SM00692C
Allan, D. B., Caswell, T., Keim, N. C. & van der Wel, C. M. trackpy: Trackpy v0.4.1. https://doi.org/10.5281/zenodo.1226458 (2018).
Curtis, J. E. & Grier, D. G. Structure of optical vortices. Phys. Rev. Lett. 90, 133901 (2003).
pubmed: 12689289 doi: 10.1103/PhysRevLett.90.133901
Reichert, M. & Stark, H. Circling particles and drafting in optical vortices. J. Phys.: Condens. Matter 16, S4085 (2004).
Lutz, C., Reichert, M., Stark, H. & Bechinger, C. Surmounting barriers: the benefit of hydrodynamic interactions. EPL 74, 719 (2006).
doi: 10.1209/epl/i2006-10017-9
Campbell, A. I., Ebbens, S. J., Illien, P. & Golestanian, R. Experimental observation of flow fields around active janus spheres. Nat. Comm. 10, 3952 (2019).
doi: 10.1038/s41467-019-11842-1
Katuri, J., Uspal, W. E., Popescu, M. N. & Sánchez, S. Inferring non-equilibrium interactions from tracer response near confined active janus particles. Sci. Adv. 7, eabd0719 (2021).
pubmed: 33931441 pmcid: 8087409 doi: 10.1126/sciadv.abd0719
Uspal, W. E., Popescu, M. N., Tasinkevych, M. & Dietrich, S. Shape-dependent guidance of active janus particles by chemically patterned surfaces. N. J. Phys. 20, 015013 (2018).
doi: 10.1088/1367-2630/aa9f9f
Hulme, S. E. et al. Using ratchets and sorters to fractionate motile cells of escherichia coli by length. Lap. Chip 8, 1888–1895 (2008).
doi: 10.1039/b809892a
Leonardo, R. D. et al. Bacterial ratchet motors. PNAS 107, 9541–9545 (2010).
pubmed: 20457936 pmcid: 2906854 doi: 10.1073/pnas.0910426107
Galajda, P. et al. Funnel ratchets in biology at low reynolds number: choanotaxis. Mod. Opt. 55, 3412–3422 (2008).
doi: 10.1080/09500340802495826
Kaiser, A., Wensink, H. H. & Löwen, H. How to capture active particles. Phys. Rev. Lett. 108, 268307 (2012).
pubmed: 23005024 doi: 10.1103/PhysRevLett.108.268307

Auteurs

Stefania Ketzetzi (S)

Soft Matter Physics, Huygens-Kamerlingh Onnes Laboratory, Leiden University, P.O. Box 9504, 2300 RA, Leiden, The Netherlands.

Melissa Rinaldin (M)

Soft Matter Physics, Huygens-Kamerlingh Onnes Laboratory, Leiden University, P.O. Box 9504, 2300 RA, Leiden, The Netherlands.
Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstr. 108, 01307, Dresden, Germany.

Pim Dröge (P)

Soft Matter Physics, Huygens-Kamerlingh Onnes Laboratory, Leiden University, P.O. Box 9504, 2300 RA, Leiden, The Netherlands.

Joost de Graaf (J)

Institute for Theoretical Physics, Center for Extreme Matter and Emergent Phenomena, Utrecht University, Princetonplein 5, 3584 CC, Utrecht, The Netherlands.

Daniela J Kraft (DJ)

Soft Matter Physics, Huygens-Kamerlingh Onnes Laboratory, Leiden University, P.O. Box 9504, 2300 RA, Leiden, The Netherlands. kraft@physics.leidenuniv.nl.

Articles similaires

Deep Learning Humans Microvessels Ultrasonography Phantoms, Imaging

Collective buoyancy-driven dynamics in swarming enzymatic nanomotors.

Shuqin Chen, Xander Peetroons, Anna C Bakenecker et al.
1.00
Urease Carbon Dioxide Nanostructures Ammonia Viscosity
Humans Motion Perception Male Female Adult
Humans Robotic Surgical Procedures Motion Child Equipment Design

Classifications MeSH