13C-labeling reveals how membrane lipid components contribute to triacylglycerol accumulation in Chlamydomonas.
Journal
Plant physiology
ISSN: 1532-2548
Titre abrégé: Plant Physiol
Pays: United States
ID NLM: 0401224
Informations de publication
Date de publication:
27 06 2022
27 06 2022
Historique:
received:
05
01
2022
accepted:
09
03
2022
pubmed:
5
4
2022
medline:
30
6
2022
entrez:
4
4
2022
Statut:
ppublish
Résumé
Lipid metabolism in microalgae has attracted much interest due to potential utilization of lipids as feedstocks for biofuels, nutraceuticals, and other high-value compounds. Chlamydomonas reinhardtii is a model organism for characterizing the synthesis of the neutral lipid triacylglycerol (TAG), from which biodiesel is made. While much of TAG accumulation under N-deprivation is the result of de novo fatty acid (FA) synthesis, recent work has revealed that approximately one-third of FAs, especially polyunsaturated FAs (PUFAs), come from preexisting membrane lipids. Here, we used 13C-isotopic labeling and mass spectrometry to analyze the turnover of glycerol backbones, headgroups, FAs, whole molecules, and molecular fragments of individual lipids. About one-third of the glyceryl backbones in TAG are derived from preexisting membrane lipids, as are approximately one-third of FAs. The different moieties of the major galactolipids turn over synchronously, while the FAs of diacylglyceryltrimethylhomoserine (DGTS), the most abundant extraplastidial lipid, turn over independently of the rest of the molecule. The major plastidic lipid monogalactosyldiacylglycerol (MGDG), whose predominant species is 18:3α/16:4, was previously shown to be a major source of PUFAs for TAG synthesis. This study reveals that MGDG turns over as whole molecules, the 18:3α/16:4 species is present in both DAG and TAG, and the positional distribution of these PUFAs is identical in MGDG, DAG, and TAG. We conclude that headgroup removal with subsequent acylation is the mechanism by which the major MGDG species is converted to TAG during N-deprivation. This has noteworthy implications for engineering the composition of microalgal TAG for food, fuel, and other applications.
Identifiants
pubmed: 35377446
pii: 6563200
doi: 10.1093/plphys/kiac154
pmc: PMC9237737
doi:
Substances chimiques
Carbon Isotopes
0
Fatty Acids
0
Fatty Acids, Unsaturated
0
Membrane Lipids
0
Triglycerides
0
Carbon-13
FDJ0A8596D
Types de publication
Journal Article
Research Support, U.S. Gov't, Non-P.H.S.
Research Support, N.I.H., Extramural
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
1326-1344Subventions
Organisme : NIGMS NIH HHS
ID : T32 GM110523
Pays : United States
Organisme : National Institute of General Medical Sciences of the National Institutes of Health
ID : T32-GM110523
Informations de copyright
© American Society of Plant Biologists 2022. All rights reserved. For permissions, please email: journals.permissions@oup.com.
Références
J Biol Chem. 2022 Jan;298(1):101396
pubmed: 34774796
Proc Natl Acad Sci U S A. 1965 Dec;54(6):1665-9
pubmed: 4379719
Plant Cell. 2012 Nov;24(11):4670-86
pubmed: 23161887
Plant Cell. 2012 Sep;24(9):3708-24
pubmed: 23012436
Bioinformatics. 2019 Nov 1;35(21):4484-4487
pubmed: 30903185
Plant J. 2015 May;82(3):504-522
pubmed: 25660108
FEBS Lett. 2013 Feb 14;587(4):370-7
pubmed: 23313852
Science. 2010 Oct 8;330(6001):226-8
pubmed: 20798281
Proc Natl Acad Sci U S A. 2000 Jun 6;97(12):6487-92
pubmed: 10829075
Plant Cell Environ. 2016 Apr;39(4):834-47
pubmed: 26477535
Mol Plant. 2019 Apr 1;12(4):474-488
pubmed: 30580039
Biochem J. 2019 May 31;476(10):1539-1551
pubmed: 31092702
Plant Physiol. 2004 Jul;135(3):1324-35
pubmed: 15247387
Front Plant Sci. 2012 Jul 02;3:147
pubmed: 22783267
J Biol Chem. 2017 Jan 6;292(1):361-374
pubmed: 27903654
Plant Physiol. 1990 Oct;94(2):766-72
pubmed: 16667777
Prog Lipid Res. 2015 Apr;58:97-120
pubmed: 25773881
Biochim Biophys Acta. 2016 Sep;1861(9 Pt B):1226-1242
pubmed: 27003250
Plant Cell Physiol. 2020 Apr 1;61(4):851-862
pubmed: 32061132
Plant Physiol. 2021 Nov 3;187(3):1341-1356
pubmed: 34618048
Plant J. 2015 May;82(3):466-480
pubmed: 25754362
Plant Cell. 2014 Nov;26(11):4270-97
pubmed: 25415976
Arabidopsis Book. 2013;11:e0161
pubmed: 23505340
J Biol Chem. 1957 May;226(1):497-509
pubmed: 13428781
Plant Cell. 2018 Aug;30(8):1887-1905
pubmed: 29967047
Plant Physiol. 2021 May 27;186(1):297-314
pubmed: 33591309
Biotechnol Bioeng. 2012 Aug;109(8):1947-57
pubmed: 22383222
Plant J. 2022 Jun 21;:
pubmed: 35727866
Plant Physiol. 2012 Nov;160(3):1530-9
pubmed: 22932756
Curr Opin Biotechnol. 2020 Aug;64:92-100
pubmed: 31864070
Plant Physiol. 2010 Dec;154(4):1737-52
pubmed: 20935180
Plant J. 2013 Sep;75(5):726-41
pubmed: 23672245
Plant Physiol. 2009 May;150(1):55-72
pubmed: 19329563
Prog Lipid Res. 2000 Nov;39(6):477-506
pubmed: 11106811
Plant Physiol. 2017 Jul;174(3):1517-1530
pubmed: 28572457
Plant Cell. 2009 Dec;21(12):3885-901
pubmed: 20040537
Plant Cell. 2014 Apr 1;26(4):1645-1665
pubmed: 24692423
Microb Cell Fact. 2011 Nov 02;10:91
pubmed: 22047615
Plant Cell. 2018 Feb;30(2):447-465
pubmed: 29437989
Biochem Soc Trans. 2000 Dec;28(6):740-3
pubmed: 11171190
Planta. 2013 Nov;238(5):895-906
pubmed: 23928654
Plant Physiol Biochem. 2005 Apr;43(4):413-7
pubmed: 15907694
Plant Physiol. 2016 Aug;171(4):2445-57
pubmed: 27325664
FEBS Lett. 2011 Jun 23;585(12):1985-91
pubmed: 21575636
J Biol Chem. 2012 May 4;287(19):15811-25
pubmed: 22403401
Plant Physiol. 2021 Apr 2;185(3):796-814
pubmed: 33822218