Saccharomyces cerevisiae whole cell biotransformation for the production of aldehyde flavors and fragrances.
Saccharomyces cerevisiae
/ genetics
Aldehydes
/ metabolism
Biotransformation
Flavoring Agents
/ metabolism
Lipoxygenase
/ metabolism
Cytochrome P-450 Enzyme System
/ metabolism
Hydro-Lyases
/ metabolism
Fatty Acids, Unsaturated
/ metabolism
Nicotiana
/ metabolism
Metabolic Engineering
/ methods
Cucumis melo
/ metabolism
Aldehyde-Lyases
Aldehydes
Enzyme engineering
Hydroperoxide lyase
Lipoxygenase
Natural flavor and fragrances
Whole cell biotransformation
Journal
Applied microbiology and biotechnology
ISSN: 1432-0614
Titre abrégé: Appl Microbiol Biotechnol
Pays: Germany
ID NLM: 8406612
Informations de publication
Date de publication:
01 Nov 2024
01 Nov 2024
Historique:
received:
13
02
2024
accepted:
15
10
2024
revised:
28
09
2024
medline:
1
11
2024
pubmed:
1
11
2024
entrez:
1
11
2024
Statut:
epublish
Résumé
9-Carbon aldehydes such as (2E)-nonenal, (3Z)-nonenal, and (2E,6Z)-nonadienal are important melon and cucumber fragrance compounds. Currently, these molecules are produced either synthetically, which faces consumer aversion, or through biotransformation using plant-extracted enzymes, which is costly and inefficient. In this study, we constructed a Saccharomyces cerevisiae platform for the whole cell biotransformation of polyunsaturated fatty acids (PUFAs) to 9-carbon aldehydes. Heterologous expression of lipoxygenase (LOX) from Nicotiana benthamiana and hydroperoxide lyase (HPL) from Cucumis melo (melon) in S. cerevisiae enabled the production of (2E)-nonenal from readily available polyunsaturated fatty acid substrates. A 5.5-fold increase in (2E)-nonenal titer was then achieved utilizing genetic and reaction condition enhancement strategies. The highest titer of (2E)-nonenal was more than 0.11 mM, with about 9% yield. This platform can potentially be used to produce a variety of other aldehyde products by customizing with LOX and HPL enzymes of different regio-selectivities. KEY POINTS: • Establishment of a S. cerevisiae whole-cell biotransformation platform for cost-efficient, high-yield conversion of PUFAs into high value 9-carbon aldehyde compounds • 5.5-Fold improvement of (2E)-nonenal titer to > 0.11 mM achieved by enhancing reaction conditions and gene expression levels of LOX and HPL.
Identifiants
pubmed: 39485521
doi: 10.1007/s00253-024-13335-8
pii: 10.1007/s00253-024-13335-8
doi:
Substances chimiques
Aldehydes
0
Flavoring Agents
0
hydroperoxide lyase
EC 4.1.2.-
Lipoxygenase
EC 1.13.11.12
Cytochrome P-450 Enzyme System
9035-51-2
Hydro-Lyases
EC 4.2.1.-
Fatty Acids, Unsaturated
0
Aldehyde-Lyases
EC 4.1.2.-
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
500Subventions
Organisme : Agency for Science, Technology and Research
ID : H20H6a0028
Informations de copyright
© 2024. The Author(s).
Références
Aanangi R, Kotapati KV, Palaka BK, Kedam T, Kanika ND, Ampasala DR (2016) Purification and characterization of lipoxygenase from mung bean (Vigna radiata L.) germinating seedlings. 3 Biotech 6(1):113
doi: 10.1007/s13205-016-0427-5
pubmed: 28330183
pmcid: 5398193
Adams A, Gottschling DE, Kaiser CA, Stearns T (1997) Methods in yeast genetics: a Cold Spring Harbor Laboratory course manual. Cold Spring Harbor Laboratory Press, New York
Akhtar MK, Turner NJ, Jones PR (2013) Carboxylic acid reductase is a versatile enzyme for the conversion of fatty acids into fuels and chemical commodities. Proc Natl Acad Sci USA 110:87–92. https://doi.org/10.1073/pnas.1216516110
doi: 10.1073/pnas.1216516110
pubmed: 23248280
Alibhai MF, Hu Z (2012) Methods and compositions for producing fatty aldehydes. United States Patent 8097439:B2
Andrianarison R, Rabinovitch-Chable H, Beneytout JL (1991) Oxodiene formation during the Vicia sativa lipoxygenase-catalyzed reaction: occurrence of dioxygenase and fatty acid lyase activities associated in a single protein. Biochem Biophys Res Commun 180:1002–1009. https://doi.org/10.1016/S0006-291X(05)81165-9
doi: 10.1016/S0006-291X(05)81165-9
pubmed: 1953704
Berndt E, Feussner I (2001) Method for producing c9 aldehydes, c9 alcohols and esters thereof. Patent WO2001094606A2.
Boutand O, Brash AR (1999) Purification and catalytic activities of the two domains of the allene oxide synthase-lipoxygenase fusion protein of the coral Plexaura homomalla. J Biol Chem 274:33764–33770. https://doi.org/10.1074/jbc.274.47.33764
doi: 10.1074/jbc.274.47.33764
Buchhaupt M, Guder JC, Etschmann MM, Schrader J (2012) Synthesis of green note aroma compounds by biotransformation of fatty acids using yeast cells coexpressing lipoxygenase and hydroperoxide lyase. Appl Microbiol Biotechnol 93:159–168. https://doi.org/10.1007/s00253-011-3482-1
doi: 10.1007/s00253-011-3482-1
pubmed: 21789493
Casu F, Pinu FR, Stefanello E, Greenwood DR, Villas-Bôas SG (2018) The fate of linoleic acid on Saccharomyces cerevisiae metabolism under aerobic and anaerobic conditions. Metabolomics 14. https://doi.org/10.1007/s11306-018-1399-8 .
Chen HM, Zhu ZJ, Chen JJ, Yang R, Luo QJ, Xu JL, Shan H, Yan XJ (2015) A multifunctional lipoxygenase from Pyropia haitanensis-the cloned and functioned complex eukaryotic algae oxylipin pathway enzyme. Algal Res 12:316–327. https://doi.org/10.1016/j.algal.2015.09
doi: 10.1016/j.algal.2015.09
Chen XS, Funk CD (2001) The N-terminal “beta-barrel” domain of 5-lipoxygenase is essential for nuclear membrane translocation. J Biol Chem 276(1):811–818. https://doi.org/10.1074/jbc.M008203200
doi: 10.1074/jbc.M008203200
pubmed: 11042185
Evans MV, Turton HE, Grant CM, Dawes IW (1998) Toxicity of linoleic acid hydroperoxide to Saccharomyces cerevisiae: involvement of a respiration-related process for maximal sensitivity and adaptive response. J Bacteriol 180:483–490. https://doi.org/10.1128/JB.180.3.483-490.1998
doi: 10.1128/JB.180.3.483-490.1998
pubmed: 9457848
pmcid: 106912
Ferreira TC, de Moraes LM, Campos EG (2011) Cell density-dependent linoleic acid toxicity to Saccharomyces cerevisiae. FEMS Yeast Res 5:408–417. https://doi.org/10.1111/j.1567-1364.2011.00729.x
doi: 10.1111/j.1567-1364.2011.00729.x
Gardner HW (1991) Recent investigations into the lipoxygenase pathway of plants. BBA 1084:221–239
pubmed: 1909580
Goers SK, Ghossi P, Patterson JT, Young CL (1989) Process for producing a green leaf essence. United States Patent 4806379.
Hammarberg T, Provost P, Persson B, Rådmark O (2000) The N-terminal domain of 5-lipoxygenase binds calcium and mediates calcium stimulation of enzyme activity. J Biol Chem 275(49):38787–38793. https://doi.org/10.1074/jbc.M006136200
doi: 10.1074/jbc.M006136200
pubmed: 10984486
Huang C, Wu H, Liu QP, Qiu-ping Li, Li YY, Zong MH (2011) Effects of aldehydes on the growth and lipid accumulation of oleaginous yeast Trichosporon fermentans. J Agric Food Chem 59:4606–4613. https://doi.org/10.1021/jf104320b
doi: 10.1021/jf104320b
pubmed: 21443267
Huang FC, Schwab W (2011) Cloning and characterization of a 9-lipoxygenase gene induced by pathogen attack from Nicotiana benthamiana for biotechnological application. BMC Biotechnol 11. https://doi.org/10.1186/1472-6750-11-30
Hubert J, Münzbergová Z, Nesvorná M, Poltronieri P, Santino A (2008) Acaricidal effects of natural six-carbon and nine-carbon aldehydes on stored-product mites. Exp Appl Acarol 44:315–321. https://doi.org/10.1007/s10493-008-9146-x
doi: 10.1007/s10493-008-9146-x
pubmed: 18421565
Julsing MK, Kuhn D, Schmid A, Buhler B (2011) Resting cells of recombinant E.coli show high epoxidation yields on energy source and high sensitivity to product inhibition. Biotechnol Bioeng 109:1109–1119. https://doi.org/10.1002/bit.24404
doi: 10.1002/bit.24404
pubmed: 22170310
Liagre B, Battu S, Rigaud M, Beneytout JL (1996) Effectiveness of talc as adsorbent for stabilization and expression of Pisum sativum hortense Cv. Solara lipoxygenase−lyase coupled activities. J Agric Food Chem 44:2057–2062
doi: 10.1021/jf950424q
Liburdi K, Esti M, Petroselli V, Mendler-Drienyovszki N, Radicetti E, Mancinelli R (2021) Catalytic properties of lipoxygenase extracted from different varieties of Pisum sativum and Lens culinaris. J Food Biochem 45(2):e13617
doi: 10.1111/jfbc.13617
pubmed: 33491200
Liu Y, Fujita Y, Kondo A, Fukuda H (2000) Preparation of high-activity whole cell biocatalysts by permeabilization of recombinant yeasts with alcohol. J Biosci Bioeng 89:554–558. https://doi.org/10.1016/s1389-1723(00)80056-0
doi: 10.1016/s1389-1723(00)80056-0
pubmed: 16232797
Longo MA, Sanromán MA (2019) Production of food aroma compounds: microbial and enzymatic methodologies. Food Technol Biotechnol 44:335–353
Matsui K, Kajiwara T, Hatanaka A (1992) Inactivation of tea leaf hydroperoxide lyase by fatty acid hydroperoxide. J Agric Food Chem 40:175–178. https://doi.org/10.1021/jf00014a002
doi: 10.1021/jf00014a002
Muller B, Gautier A, Dean C, Kuhn JC (1995) Process for the enzymatic preparation of aliphatic alcohols and aldehydes from linoleic acid, or a natural precursor. United States Patent 5464761
Qin X, Qian J, Yao G, Zhuang Y, Zhang S, Chu J (2011) GAP promoter library for fine-tuning of gene expression in Pichia pastoris. Appl Environ Microbiol 77:3600–3608. https://doi.org/10.1128/AEM.02843-10
doi: 10.1128/AEM.02843-10
pubmed: 21498769
pmcid: 3127614
Rabetafika HN, Gigot C, Fauconnier ML, Ongena M, Destain J, du Jardin P, Wathelet JP, Thonart P (2008) Sugar beet leaves as new source of hydroperoxide lyase in a bioprocess producing green-note aldehydes. Biotechnol Lett 30:1115–1119
doi: 10.1007/s10529-008-9652-2
pubmed: 18259877
Senger T, Wichard T, Kunze S, Göbel C, Lerchl J, Pohnert G, Feussner I (2005) A multifunctional lipoxygenase with fatty acid hydroperoxide cleaving activity from the moss Physcomitrella patens. J Biol Chem 280:7588–7596. https://doi.org/10.1074/jbc.M411738200
doi: 10.1074/jbc.M411738200
pubmed: 15611050
Shepard SR, Stone C, Cook S, Bouvier A, Boyd G, Weatherly G, Lydiard D, Schrimsher J (2002) Recovery of intracellular recombinant proteins from the yeast Pichia pastoris by cell permeabilization. J Biotechnol 99:149–160. https://doi.org/10.1016/s0168-1656(02)00182-7
doi: 10.1016/s0168-1656(02)00182-7
pubmed: 12270602
Shibata D, Axelrod B (1995) Plant lipoxygenases. J Lipid Mediat Cell Signal 12:213–228. https://doi.org/10.1016/0929-7855(95)00020-Q
doi: 10.1016/0929-7855(95)00020-Q
pubmed: 8777567
Sporleder F, Buchhaupt M, Schrader J (2013). Whole-cell biotransformation of fatty acids to obtain fatty aldehydes shortened by one carbon atom. United States Patent 10017790
Tijet N, Schneider C, Muller BL, Brash AR (2001) Biogenesis of volatile aldehydes from fatty acid hydroperoxides: molecular cloning of a hydroperoxide lyase (CYP74C) with specificity for both the 9- and 13-hydroperoxides of linoleic and linolenic acids. Arch Biochem Biophys 386:281–289. https://doi.org/10.1006/abbi.2000.2218
doi: 10.1006/abbi.2000.2218
pubmed: 11368353
Tran Thanh H, Beney L, Simonin H, Nguyen TX, Gervais P, Belin JM, Husson F (2007) Toxicity of fatty acid hydroperoxides towards Yarrowia lipolytica: implication of their membrane fluidizing action. Biochim Biophys Acta 1768:2256–2262. https://doi.org/10.1016/j.bbamem.2007.05.016
doi: 10.1016/j.bbamem.2007.05.016
pubmed: 17586461
Trawczyńska I, Wójcik M (2015) Optimization of permeabilization process of yeast cells for catalase activity using response surface methodology. Biotechnol Biotechnol Equip 29:72–77. https://doi.org/10.1080/13102818.2014.934986
doi: 10.1080/13102818.2014.934986
pubmed: 26019618
pmcid: 4434045
Tsuneyoshi K, Itoh H (1988) Method for preparing green aroma compounds. United States Patent 4769243.
Uemura H (2012) Synthesis and production of unsaturated and polyunsaturated fatty acids in yeast: current state and perspectives. Appl Microbiol Biotechnol 95:1–12. https://doi.org/10.1007/s00253-012-4105-1
doi: 10.1007/s00253-012-4105-1
pubmed: 22562166
Vellanki RN, Komaravelli N, Tatineni R, Mangamoori LN (2007) Expression of hepatitis B surface antigen in Saccharomyces cerevisiae utilizing glyceraldeyhyde-3-phosphate dehydrogenase promoter of Pichia pastoris. Biotechnol Lett 29:313–318
doi: 10.1007/s10529-006-9242-0
pubmed: 17136304
Vellanki R.N, Potumarthi, R, Doddapaneni KK, Anubrolu N, Mangamoori LN (2013) Constitutive optimized production of streptokinase in Saccharomyces cerevisiae utilizing glyceraldehyde 3-phosphate dehydrogenase promoter of Pichia pastoris. BioMed Research International 268249
Yesilirmak F, Sayers Z (2009) Heterelogous expression of plant genes. Int J Plant Genomics 2009:296482. https://doi.org/10.1155/2009/296482
doi: 10.1155/2009/296482
pubmed: 19672459
pmcid: 2722100
Zaldivar J, Martinez A, Ingram LO (1999) Effect of selected aldehydes on the growth and fermentation of ethanologic Escherichia coli. Biotechnol Bioeng 65:24–33
doi: 10.1002/(SICI)1097-0290(19991005)65:1<24::AID-BIT4>3.0.CO;2-2
pubmed: 10440668