Improved fluorescent phytochromes for in situ imaging.


Journal

Scientific reports
ISSN: 2045-2322
Titre abrégé: Sci Rep
Pays: England
ID NLM: 101563288

Informations de publication

Date de publication:
04 04 2022
Historique:
received: 24 09 2021
accepted: 14 03 2022
entrez: 5 4 2022
pubmed: 6 4 2022
medline: 7 4 2022
Statut: epublish

Résumé

Modern biology investigations on phytochromes as near-infrared fluorescent pigments pave the way for the development of new biosensors, as well as for optogenetics and in vivo imaging tools. Recently, near-infrared fluorescent proteins (NIR-FPs) engineered from biliverdin-binding bacteriophytochromes and cyanobacteriochromes, and from phycocyanobilin-binding cyanobacterial phytochromes have become promising probes for fluorescence microscopy and in vivo imaging. However, current NIR-FPs typically suffer from low fluorescence quantum yields and short fluorescence lifetimes. Here, we applied the rational approach of combining mutations known to enhance fluorescence in the cyanobacterial phytochrome Cph1 to derive a series of highly fluorescent variants with fluorescence quantum yield exceeding 15%. These variants were characterised by biochemical and spectroscopic methods, including time-resolved fluorescence spectroscopy. We show that these new NIR-FPs exhibit high fluorescence quantum yields and long fluorescence lifetimes, contributing to their bright fluorescence, and provide fluorescence lifetime imaging measurements in E.coli cells.

Identifiants

pubmed: 35379835
doi: 10.1038/s41598-022-09169-x
pii: 10.1038/s41598-022-09169-x
pmc: PMC8980088
doi:

Substances chimiques

Bacterial Proteins 0
Luminescent Proteins 0
Phytochrome 11121-56-5
Biliverdine O9MIA842K9

Types de publication

Journal Article Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

5587

Informations de copyright

© 2022. The Author(s).

Références

Biochemistry. 2020 Mar 10;59(9):1051-1062
pubmed: 32069394
Theranostics. 2020 May 15;10(14):6322-6336
pubmed: 32483455
Nat Biotechnol. 2011 Jul 17;29(8):757-61
pubmed: 21765402
Nat Commun. 2013;4:2153
pubmed: 23842578
J Plant Res. 2016 Mar;129(2):123-35
pubmed: 26818948
J Biol Chem. 2008 May 2;283(18):12212-26
pubmed: 18192276
J Mol Biol. 2003 May 2;328(3):705-19
pubmed: 12706727
Biochemistry. 2005 Nov 22;44(46):15203-15
pubmed: 16285723
Angew Chem Int Ed Engl. 2016 May 17;55(21):6339-42
pubmed: 27101018
Proc Natl Acad Sci U S A. 2006 Jul 25;103(30):11136-41
pubmed: 16844775
J Biol Chem. 2014 Nov 14;289(46):32144-32152
pubmed: 25253687
J Mol Biol. 2011 Oct 14;413(1):115-27
pubmed: 21888915
Proc Natl Acad Sci U S A. 2009 Apr 14;106(15):6123-7
pubmed: 19339496
Science. 2009 May 8;324(5928):804-7
pubmed: 19423828
Trends Plant Sci. 2002 Aug;7(8):357-66
pubmed: 12167331
Ann N Y Acad Sci. 2017 Oct;1405(1):202-214
pubmed: 28985028
Photochem Photobiol Sci. 2013 Jun;12(6):1036-40
pubmed: 23545837
J Am Chem Soc. 2007 Jan 10;129(1):126-32
pubmed: 17199291
Proc Natl Acad Sci U S A. 2020 Jul 14;117(28):16356-16362
pubmed: 32591422
Chemphyschem. 2010 Apr 26;11(6):1172-80
pubmed: 20155775
ACS Synth Biol. 2018 Feb 16;7(2):706-717
pubmed: 29301067
J Biol Chem. 2011 Jan 14;286(2):1103-13
pubmed: 21071442
J Biol Chem. 2008 Jul 25;283(30):21251-66
pubmed: 18480055
Photochem Photobiol. 2007 Mar-Apr;83(2):378-84
pubmed: 17117889
Methods Cell Biol. 2011;102:431-61
pubmed: 21704849
Photochem Photobiol. 1998 Feb;67(2):263-7
pubmed: 9487803
Sci Rep. 2016 Jan 04;6:18750
pubmed: 26725513
FEBS Lett. 2001 Nov 23;508(3):459-62
pubmed: 11728472
Biochim Biophys Acta. 2014 May;1837(5):694-709
pubmed: 24183695
Nat Plants. 2020 May;6(5):581-588
pubmed: 32366982
Photochem Photobiol. 2014 Jul-Aug;90(4):786-95
pubmed: 24571438
Proc Natl Acad Sci U S A. 2011 Mar 8;108(10):3842-7
pubmed: 21325055
J Biol Chem. 2014 Jan 31;289(5):2552-62
pubmed: 24327657
Eur J Pharm Biopharm. 2017 Jan;110:31-38
pubmed: 27810469
Proc Natl Acad Sci U S A. 2017 Nov 7;114(45):11962-11967
pubmed: 29078307
Nat Biotechnol. 2022 Feb;40(2):262-272
pubmed: 34608325
J Biol Chem. 2018 May 25;293(21):8161-8172
pubmed: 29622676
Semin Cell Dev Biol. 2000 Dec;11(6):511-21
pubmed: 11145881
Nature. 2000 Oct 5;407(6804):585-91
pubmed: 11034200
Curr Biol. 1997 Nov 1;7(11):870-6
pubmed: 9382811
Eur J Pharm Biopharm. 2017 Jul;116:111-124
pubmed: 28115230
Proc Natl Acad Sci U S A. 2004 Dec 14;101(50):17334-9
pubmed: 15548612
J Photochem Photobiol B. 2002 May;67(1):39-50
pubmed: 12007466
Proc Natl Acad Sci U S A. 1983 Oct;80(20):6244-8
pubmed: 16593380
Proc Natl Acad Sci U S A. 2008 Sep 23;105(38):14709-14
pubmed: 18799745
J Biol Chem. 2012 Mar 2;287(10):7000-9
pubmed: 22210774
Nat Commun. 2018 Nov 12;9(1):4762
pubmed: 30420676
Plant Cell. 2007 Jul;19(7):2124-39
pubmed: 17660358
J Phys Chem Lett. 2018 Jun 21;9(12):3454-3462
pubmed: 29874080
Phys Chem Chem Phys. 2011 Jul 7;13(25):11985-97
pubmed: 21611667
Front Mol Biosci. 2015 Dec 23;2:75
pubmed: 26779488
Struct Dyn. 2014 Feb 05;1(1):014701
pubmed: 26798771
Sci Rep. 2019 Feb 12;9(1):1866
pubmed: 30755663
J Biol Chem. 2020 Jan 10;295(2):539-551
pubmed: 31801828
Chem Soc Rev. 2013 Apr 21;42(8):3441-52
pubmed: 23361376
Nat Commun. 2019 Jan 17;10(1):279
pubmed: 30655515
Nat Med. 2003 Jan;9(1):123-8
pubmed: 12514725
J Phys Chem B. 2017 Jan 12;121(1):47-57
pubmed: 27966353

Auteurs

Soshichiro Nagano (S)

Institut Für Pflanzenphysiologie, Justus-Liebig-Universität, 35390, Giessen, Germany.

Maryam Sadeghi (M)

Institut Für Experimentalphysik, Freie Universität Berlin, 14195, Berlin, Germany.

Jens Balke (J)

Institut Für Experimentalphysik, Freie Universität Berlin, 14195, Berlin, Germany.

Moritz Fleck (M)

Institut Für Pflanzenphysiologie, Justus-Liebig-Universität, 35390, Giessen, Germany.

Nina Heckmann (N)

Institut Für Pflanzenphysiologie, Justus-Liebig-Universität, 35390, Giessen, Germany.

Georgios Psakis (G)

Institut Für Pflanzenphysiologie, Justus-Liebig-Universität, 35390, Giessen, Germany.
Faculty of Health Sciences, Department of Food Sciences & Nutrition, Mater Dei Hospital, University of Malta, Msida, MSD 2080, Malta.

Ulrike Alexiev (U)

Institut Für Experimentalphysik, Freie Universität Berlin, 14195, Berlin, Germany. ulrike.alexiev@fu-berlin.de.

Articles similaires

Photosynthesis Ribulose-Bisphosphate Carboxylase Carbon Dioxide Molecular Dynamics Simulation Cyanobacteria

Two codependent routes lead to high-level MRSA.

Abimbola Feyisara Adedeji-Olulana, Katarzyna Wacnik, Lucia Lafage et al.
1.00
Methicillin-Resistant Staphylococcus aureus Penicillin-Binding Proteins Peptidoglycan Bacterial Proteins Anti-Bacterial Agents
Pseudopodia Myosins Humans Actins Cell Line, Tumor
Mycobacterium tuberculosis Animals Guinea Pigs Bacterial Proteins Toxin-Antitoxin Systems

Classifications MeSH