Tomatidine-stimulated maturation of human embryonic stem cell-derived cardiomyocytes for modeling mitochondrial dysfunction.


Journal

Experimental & molecular medicine
ISSN: 2092-6413
Titre abrégé: Exp Mol Med
Pays: United States
ID NLM: 9607880

Informations de publication

Date de publication:
04 2022
Historique:
received: 28 04 2021
accepted: 19 10 2021
revised: 22 08 2021
pubmed: 6 4 2022
medline: 11 5 2022
entrez: 5 4 2022
Statut: ppublish

Résumé

Human embryonic stem cell-derived cardiomyocytes (hESC-CMs) have been reported to exhibit immature embryonic or fetal cardiomyocyte-like phenotypes. To enhance the maturation of hESC-CMs, we identified a natural steroidal alkaloid, tomatidine, as a new substance that stimulates the maturation of hESC-CMs. Treatment of human embryonic stem cells with tomatidine during cardiomyocyte differentiation stimulated the expression of several cardiomyocyte-specific markers and increased the density of T-tubules. Furthermore, tomatidine treatment augmented the number and size of mitochondria and enhanced the formation of mitochondrial lamellar cristae. Tomatidine treatment stimulated mitochondrial functions, including mitochondrial membrane potential, oxidative phosphorylation, and ATP production, in hESC-CMs. Tomatidine-treated hESC-CMs were more sensitive to doxorubicin-induced cardiotoxicity than the control cells. In conclusion, the present study suggests that tomatidine promotes the differentiation of stem cells to adult cardiomyocytes by accelerating mitochondrial biogenesis and maturation and that tomatidine-treated mature hESC-CMs can be used for cardiotoxicity screening and cardiac disease modeling.

Identifiants

pubmed: 35379934
doi: 10.1038/s12276-022-00746-8
pii: 10.1038/s12276-022-00746-8
pmc: PMC9076832
doi:

Substances chimiques

tomatidine 2B73S48786
Tomatine 31U6547O08

Types de publication

Journal Article Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

493-502

Informations de copyright

© 2022. The Author(s).

Références

Ferri, N. et al. Drug attrition during pre-clinical and clinical development: understanding and managing drug-induced cardiotoxicity. Pharmacol. Ther. 138, 470–484 (2013).
pubmed: 23507039 doi: 10.1016/j.pharmthera.2013.03.005
Gintant, G., Sager, P. T. & Stockbridge, N. Evolution of strategies to improve preclinical cardiac safety testing. Nat. Rev. Drug Discov. 15, 457–471 (2016).
pubmed: 26893184 doi: 10.1038/nrd.2015.34
Stella Stoter, A. M., Hirt, M. N., Stenzig, J. & Weinberger, F. Assessment of cardiotoxicity with stem cell-based strategies. Clin. Ther. 42, 1892–1910 (2020).
pubmed: 32938533 doi: 10.1016/j.clinthera.2020.08.012
Lian, X. et al. Directed cardiomyocyte differentiation from human pluripotent stem cells by modulating Wnt/beta-catenin signaling under fully defined conditions. Nat. Protoc. 8, 162–175 (2013).
pubmed: 23257984 doi: 10.1038/nprot.2012.150
Zhu, W. Z., Santana, L. F. & Laflamme, M. A. Local control of excitation-contraction coupling in human embryonic stem cell-derived cardiomyocytes. PLoS ONE 4, e5407 (2009).
pubmed: 19404384 pmcid: 2671137 doi: 10.1371/journal.pone.0005407
Karbassi, E. et al. Cardiomyocyte maturation: advances in knowledge and implications for regenerative medicine. Nat. Rev. Cardiol. 17, 341–359 (2020).
pubmed: 32015528 pmcid: 7239749 doi: 10.1038/s41569-019-0331-x
Robertson, C., Tran, D. D. & George, S. C. Concise review: maturation phases of human pluripotent stem cell-derived cardiomyocytes. Stem Cells 31, 829–837 (2013).
pubmed: 23355363 doi: 10.1002/stem.1331
Varga, Z. V., Ferdinandy, P., Liaudet, L. & Pacher, P. Drug-induced mitochondrial dysfunction and cardiotoxicity. Am. J. Physiol. Heart Circ. Physiol. 309, H1453–H1467 (2015).
pubmed: 26386112 pmcid: 4666974 doi: 10.1152/ajpheart.00554.2015
Ikon, N. & Ryan, R. O. Cardiolipin and mitochondrial cristae organization. Biochim. Biophys. Acta Biomembr. 1859, 1156–1163 (2017).
pubmed: 28336315 doi: 10.1016/j.bbamem.2017.03.013
Goormaghtigh, E., Huart, P., Praet, M., Brasseur, R. & Ruysschaert, J. M. Structure of the adriamycin-cardiolipin complex. Role in mitochondrial toxicity. Biophys. Chem. 35, 247–257 (1990).
pubmed: 2204444 doi: 10.1016/0301-4622(90)80012-V
Aryal, B. & Rao, V. A. Deficiency in cardiolipin reduces doxorubicin-induced oxidative stress and mitochondrial damage in human B-lymphocytes. PLoS ONE 11, e0158376 (2016).
pubmed: 27434059 pmcid: 4951097 doi: 10.1371/journal.pone.0158376
Wallace, K. B., Sardao, V. A. & Oliveira, P. J. Mitochondrial determinants of doxorubicin-induced cardiomyopathy. Circ. Res. 126, 926–941 (2020).
pubmed: 32213135 pmcid: 7121924 doi: 10.1161/CIRCRESAHA.119.314681
Cui, N. et al. Doxorubicin-induced cardiotoxicity is maturation dependent due to the shift from topoisomerase IIalpha to IIbeta in human stem cell derived cardiomyocytes. J. Cell Mol. Med. 23, 4627–4639 (2019).
pubmed: 31106979 pmcid: 6584544 doi: 10.1111/jcmm.14346
Waltz, T. B. et al. Sarcopenia, aging and prospective interventional strategies. Curr. Med. Chem. 25, 5588–5596 (2018).
pubmed: 28762310 pmcid: 5792375 doi: 10.2174/0929867324666170801095850
Jiang, Q. W. et al. Therapeutic potential of steroidal alkaloids in cancer and other diseases. Med. Res. Rev. 36, 119–143 (2016).
pubmed: 25820039 doi: 10.1002/med.21346
Dyle, M. C. et al. Systems-based discovery of tomatidine as a natural small molecule inhibitor of skeletal muscle atrophy. J. Biol. Chem. 289, 14913–14924 (2014).
pubmed: 24719321 pmcid: 4031541 doi: 10.1074/jbc.M114.556241
Ebert, S. M. et al. Identification and small molecule inhibition of an activating transcription factor 4 (ATF4)-dependent pathway to age-related skeletal muscle weakness and atrophy. J. Biol. Chem. 290, 25497–25511 (2015).
pubmed: 26338703 pmcid: 4646196 doi: 10.1074/jbc.M115.681445
Rutkowski, D. T. & Kaufman, R. J. All roads lead to ATF4. Dev. Cell 4, 442–444 (2003).
pubmed: 12689582 doi: 10.1016/S1534-5807(03)00100-X
Fang, E. F. et al. Tomatidine enhances lifespan and healthspan in C. elegans through mitophagy induction via the SKN-1/Nrf2 pathway. Sci. Rep. 7, 46208 (2017).
pubmed: 28397803 pmcid: 5387417 doi: 10.1038/srep46208
Yang, X., Pabon, L. & Murry, C. E. Engineering adolescence: maturation of human pluripotent stem cell-derived cardiomyocytes. Circ. Res. 114, 511–523 (2014).
pubmed: 24481842 pmcid: 3955370 doi: 10.1161/CIRCRESAHA.114.300558
Brette, F. & Orchard, C. T-tubule function in mammalian cardiac myocytes. Circ. Res. 92, 1182–1192 (2003).
pubmed: 12805236 doi: 10.1161/01.RES.0000074908.17214.FD
De La Mata, A. et al. BIN1 induces the formation of T-tubules and adult-like Ca(2+) release units in developing cardiomyocytes. Stem Cells 37, 54–64 (2019).
doi: 10.1002/stem.2927
Hong, T. et al. Cardiac BIN1 folds T-tubule membrane, controlling ion flux and limiting arrhythmia. Nat. Med. 20, 624–632 (2014).
pubmed: 24836577 pmcid: 4048325 doi: 10.1038/nm.3543
Takeshima, H., Komazaki, S., Nishi, M., Iino, M. & Kangawa, K. Junctophilins: a novel family of junctional membrane complex proteins. Mol. Cell 6, 11–22 (2000).
pubmed: 10949023
Folmes, C. D., Dzeja, P. P., Nelson, T. J. & Terzic, A. Mitochondria in control of cell fate. Circ. Res. 110, 526–529 (2012).
pubmed: 22343555 pmcid: 3491643 doi: 10.1161/RES.0b013e31824ae5c1
Chung, S. et al. Mitochondrial oxidative metabolism is required for the cardiac differentiation of stem cells. Nat. Clin. Pract. Cardiovasc. Med. 4, S60–S67 (2007).
pubmed: 17230217 pmcid: 3232050 doi: 10.1038/ncpcardio0766
Katz, A. M. & Lorell, B. H. Regulation of cardiac contraction and relaxation. Circulation 102, IV69–IV74 (2000).
pubmed: 11080134 doi: 10.1161/circ.102.suppl_4.IV-69
Li, G. R. & Dong, M. Q. Pharmacology of cardiac potassium channels. Adv. Pharmacol. 59, 93–134 (2010).
pubmed: 20933200 doi: 10.1016/S1054-3589(10)59004-5
Aas, T. et al. Specific P53 mutations are associated with de novo resistance to doxorubicin in breast cancer patients. Nat. Med. 2, 811–814 (1996).
pubmed: 8673929 doi: 10.1038/nm0796-811
Kuerer, H. M. et al. Clinical course of breast cancer patients with complete pathologic primary tumor and axillary lymph node response to doxorubicin-based neoadjuvant chemotherapy. J. Clin. Oncol. 17, 460–469 (1999).
pubmed: 10080586 doi: 10.1200/JCO.1999.17.2.460
Singal, P. K. & Iliskovic, N. Doxorubicin-induced cardiomyopathy. N. Engl. J. Med. 339, 900–905 (1998).
pubmed: 9744975 doi: 10.1056/NEJM199809243391307
Von Hoff, D. D. et al. Risk factors for doxorubicin-induced congestive heart failure. Ann. Intern. Med. 91, 710–717 (1979).
doi: 10.7326/0003-4819-91-5-710
Zhang, S. et al. Identification of the molecular basis of doxorubicin-induced cardiotoxicity. Nat. Med. 18, 1639–1642 (2012).
pubmed: 23104132 doi: 10.1038/nm.2919
Chatterjee, K., Zhang, J., Honbo, N. & Karliner, J. S. Doxorubicin cardiomyopathy. Cardiology 115, 155–162 (2010).
pubmed: 20016174 doi: 10.1159/000265166
Tamai, T. et al. Rheb (Ras homologue enriched in brain)-dependent mammalian target of rapamycin complex 1 (mTORC1) activation becomes indispensable for cardiac hypertrophic growth after early postnatal period. J. Biol. Chem. 288, 10176–10187 (2013).
pubmed: 23426372 pmcid: 3617260 doi: 10.1074/jbc.M112.423640
Kunkel, S. D. et al. mRNA expression signatures of human skeletal muscle atrophy identify a natural compound that increases muscle mass. Cell Metab. 13, 627–638 (2011).
pubmed: 21641545 pmcid: 3120768 doi: 10.1016/j.cmet.2011.03.020
Chen, J. et al. Ursolic acid induces mitochondrial biogenesis through the activation of AMPK and PGC-1 in C2C12 myotubes: a possible mechanism underlying its beneficial effect on exercise endurance. Food Funct. 8, 2425–2436 (2017).
pubmed: 28675237 doi: 10.1039/C7FO00127D
Hasan, A. et al. Age-dependent maturation of iPSC-CMs leads to the enhanced compartmentation of beta2AR-cAMP signalling. Cells 9, 2275 (2020).
pmcid: 7601768 doi: 10.3390/cells9102275
Lee, Y. K. et al. Triiodothyronine promotes cardiac differentiation and maturation of embryonic stem cells via the classical genomic pathway. Mol. Endocrinol. 24, 1728–1736 (2010).
pubmed: 20667986 pmcid: 5417405 doi: 10.1210/me.2010-0032
Kuppusamy, K. T. et al. Let-7 family of microRNA is required for maturation and adult-like metabolism in stem cell-derived cardiomyocytes. Proc. Natl Acad. Sci. USA 112, E2785–E2794 (2015).
pubmed: 25964336 pmcid: 4450404 doi: 10.1073/pnas.1424042112
Montessuit, C., Palma, T., Viglino, C., Pellieux, C. & Lerch, R. Effects of insulin-like growth factor-I on the maturation of metabolism in neonatal rat cardiomyocytes. Pflug. Arch. 452, 380–386 (2006).
doi: 10.1007/s00424-006-0059-4
Kim, C. et al. Non-cardiomyocytes influence the electrophysiological maturation of human embryonic stem cell-derived cardiomyocytes during differentiation. Stem Cells Dev. 19, 783–795 (2010).
pubmed: 20001453 doi: 10.1089/scd.2009.0349
Yoshida, S. et al. Maturation of human induced pluripotent stem cell-derived cardiomyocytes by soluble factors from human mesenchymal stem cells. Mol. Ther. 26, 2681–2695 (2018).
pubmed: 30217728 pmcid: 6224789 doi: 10.1016/j.ymthe.2018.08.012
Yang, X. et al. Fatty acids enhance the maturation of cardiomyocytes derived from human pluripotent stem cells. Stem Cell Rep. 13, 657–668 (2019).
doi: 10.1016/j.stemcr.2019.08.013
Snir, M. et al. Assessment of the ultrastructural and proliferative properties of human embryonic stem cell-derived cardiomyocytes. Am. J. Physiol. Heart Circ. Physiol. 285, H2355–H2363 (2003).
pubmed: 14613910 doi: 10.1152/ajpheart.00020.2003
Huang, C. Y. et al. Enhancement of human iPSC-derived cardiomyocyte maturation by chemical conditioning in a 3D environment. J. Mol. Cell Cardiol. 138, 1–11 (2020).
pubmed: 31655038 doi: 10.1016/j.yjmcc.2019.10.001
Ronaldson-Bouchard, K. et al. Advanced maturation of human cardiac tissue grown from pluripotent stem cells. Nature 556, 239–243 (2018).
pubmed: 29618819 pmcid: 5895513 doi: 10.1038/s41586-018-0016-3
Liu, A. et al. Functional characterization of inward rectifier potassium ion channel in murine fetal ventricular cardiomyocytes. Cell Physiol. Biochem. 26, 413–420 (2010).
pubmed: 20798526 doi: 10.1159/000320565
Dhamoon, A. S. & Jalife, J. The inward rectifier current (IK1) controls cardiac excitability and is involved in arrhythmogenesis. Heart Rhythm 2, 316–324 (2005).
pubmed: 15851327 doi: 10.1016/j.hrthm.2004.11.012
Ge, F., Wang, Z. & Xi, J. J. Engineered maturation approaches of human pluripotent stem cell-derived ventricular cardiomyocytes. Cells 9, 9 (2019).
pmcid: 7016801 doi: 10.3390/cells9010009
Feric, N. T. & Radisic, M. Maturing human pluripotent stem cell-derived cardiomyocytes in human engineered cardiac tissues. Adv. Drug Deliv. Rev. 96, 110–134 (2016).
pubmed: 25956564 doi: 10.1016/j.addr.2015.04.019
Lesmana, R. et al. Thyroid hormone stimulation of autophagy is essential for mitochondrial biogenesis and activity in skeletal muscle. Endocrinology 157, 23–38 (2016).
pubmed: 26562261 doi: 10.1210/en.2015-1632
Dorn, G. W. 2nd, Vega, R. B. & Kelly, D. P. Mitochondrial biogenesis and dynamics in the developing and diseased heart. Genes Dev. 29, 1981–1991 (2015).
pubmed: 26443844 pmcid: 4604339 doi: 10.1101/gad.269894.115
Cui, A. et al. Dexamethasone-induced Kruppel-like factor 9 expression promotes hepatic gluconeogenesis and hyperglycemia. J. Clin. Invest. 129, 2266–2278 (2019).
pubmed: 31033478 pmcid: 6546458 doi: 10.1172/JCI66062
Bocco, B. M. et al. Thyroid hormone activation by type 2 deiodinase mediates exercise-induced peroxisome proliferator-activated receptor-gamma coactivator-1alpha expression in skeletal muscle. J. Physiol. 594, 5255–5269 (2016).
pubmed: 27302464 pmcid: 5023700 doi: 10.1113/JP272440
Schuler, M. et al. PGC1alpha expression is controlled in skeletal muscles by PPARbeta, whose ablation results in fiber-type switching, obesity, and type 2 diabetes. Cell Metab. 4, 407–414 (2006).
pubmed: 17084713 doi: 10.1016/j.cmet.2006.10.003
Maillet, A. et al. Modeling doxorubicin-induced cardiotoxicity in human pluripotent stem cell derived-cardiomyocytes. Sci. Rep. 6, 25333 (2016).
pubmed: 27142468 pmcid: 4855185 doi: 10.1038/srep25333

Auteurs

Ye Seul Kim (YS)

Department of Physiology, School of Medicine, Pusan National University, Yangsan, Republic of Korea.

Jung Won Yoon (JW)

Department of Physiology, School of Medicine, Pusan National University, Yangsan, Republic of Korea.

Dasol Kim (D)

Department of Physiology, School of Medicine, Pusan National University, Yangsan, Republic of Korea.

Seunghak Choi (S)

Department of Physiology and Biophysics, College of Medicine, Cardiovascular and Metabolic Disease Center, Inje University, Busan, Republic of Korea.

Hyoung Kyu Kim (HK)

Department of Physiology and Biophysics, College of Medicine, Cardiovascular and Metabolic Disease Center, Inje University, Busan, Republic of Korea.

Jae Boum Youm (JB)

Department of Physiology and Biophysics, College of Medicine, Cardiovascular and Metabolic Disease Center, Inje University, Busan, Republic of Korea.

Jin Han (J)

Department of Physiology and Biophysics, College of Medicine, Cardiovascular and Metabolic Disease Center, Inje University, Busan, Republic of Korea.

Soon Chul Heo (SC)

Department of Oral Physiology, School of Dentistry, Pusan National University, Yangsan, Republic of Korea.

Sung-Ae Hyun (SA)

Safety Pharmacology Research Group, Korea Institute of Toxicology, Daejeon, 34114, Republic of Korea.

Jung-Wook Seo (JW)

Safety Pharmacology Research Group, Korea Institute of Toxicology, Daejeon, 34114, Republic of Korea.

Deok-Ho Kim (DH)

Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, 21205, USA.

Jae Ho Kim (JH)

Department of Physiology, School of Medicine, Pusan National University, Yangsan, Republic of Korea. jhkimst@pusan.ac.kr.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH