Transcriptomic profiling of nitrogen fixation and the role of NifA in Methylomicrobium buryatense 5GB1.
Methanotrophic bacteria
NifA
Nitrogen metabolism
Transcription factor
Transcriptomic analysis
Journal
Applied microbiology and biotechnology
ISSN: 1432-0614
Titre abrégé: Appl Microbiol Biotechnol
Pays: Germany
ID NLM: 8406612
Informations de publication
Date de publication:
Apr 2022
Apr 2022
Historique:
received:
21
01
2022
accepted:
30
03
2022
revised:
29
03
2022
pubmed:
7
4
2022
medline:
6
5
2022
entrez:
6
4
2022
Statut:
ppublish
Résumé
Methanotrophs capable of converting C1-based substrates play an important role in the global carbon cycle. As one of the essential macronutrient components in the medium, the uptake of nitrogen sources severely regulates the cell's metabolism. Although the feasibility of utilizing nitrogen gas (N
Identifiants
pubmed: 35384448
doi: 10.1007/s00253-022-11910-5
pii: 10.1007/s00253-022-11910-5
doi:
Substances chimiques
Bacterial Proteins
0
Carbon
7440-44-0
Nitrogen
N762921K75
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
3191-3199Subventions
Organisme : the National Key Research and Development Program of China
ID : 2021YFC2103500
Organisme : the National Natural Science Foundation of China
ID : 22178281
Organisme : the Key Research and Development Program of Shaanxi Province
ID : 2021SF-103
Organisme : the China Postdoctoral Science Foundation
ID : 2021M702587
Informations de copyright
© 2022. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.
Références
Addo MA, Dos SP (2020) Distribution of nitrogen-fixation genes in prokaryotes containing alternative nitrogenases. ChemBioChem 21(12):1749–1759. https://doi.org/10.1002/cbic.202000022
doi: 10.1002/cbic.202000022
pubmed: 32202031
Auman AJ, Speake CC, Lidstrom ME (2001) NifH sequences and nitrogen fixation in type I and type II methanotrophs. Appl Environ Microbiol 67:4009–4016. https://doi.org/10.1128/AEM.67.9.4009-4016.2001
doi: 10.1128/AEM.67.9.4009-4016.2001
pubmed: 11525998
pmcid: 93122
Bebout BM, Fitzpatrick MW, Paerl HW (1993) Identification of the sources of energy for nitrogen fixation and physiological characterization of nitrogen-fixing members of a marine microbial mat community. Appl Environ Microbiol 59:1495–1503. https://doi.org/10.1128/aem.59.5.1495-1503.1993
doi: 10.1128/aem.59.5.1495-1503.1993
pubmed: 16348935
pmcid: 182109
Cheung S, Zehr JP, Xia XM, Tsurumoto C, Endo H, Nakaoka SI, Mak W, Suzuki K, Liu HB (2021) Gamma4: a genetically versatile Gammaproteobacterial nifH phylotype that is widely distributed in the North Pacific Ocean. Environ Microbiol 23(8):4246–4259. https://doi.org/10.1111/1462-2920.15604
doi: 10.1111/1462-2920.15604
pubmed: 34046993
De la Torre A, Metivier A, Chu F, Laurens LM, Beck DA, Pienkos PT, Lidstrom ME, Kalyuzhnaya MG (2015) Genome-scale metabolic reconstructions and theoretical investigation of methane conversion in Methylomicrobium buryatense strain 5G(B1). Microb Cell Fact 14:188. https://doi.org/10.1186/s12934-015-0377-3
doi: 10.1186/s12934-015-0377-3
pubmed: 26607880
pmcid: 4658805
Dekas AE, Poretsky RS, Orphan VJ (2009) Deep-sea archaea fix and share nitrogen in methane-consuming microbial consortia. Science 326:422–426. https://doi.org/10.1126/science.1178223
doi: 10.1126/science.1178223
pubmed: 19833965
Demtröder L, Pfänder Y, Schäkermann S, Bandow JE, Masepohl B (2019) NifA is the master regulator of both nitrogenase systems in Rhodobacter capsulatus. Microbiologyopen 8:e921. https://doi.org/10.1002/mbo3.921
doi: 10.1002/mbo3.921
pubmed: 31441241
pmcid: 6925177
Egener T, Sarkar A, Martin DE, Reinhold-Hurek B (2002) Identification of a NifL-like protein in a diazotroph of the beta-subgroup of the Proteobacteria, Azoarcus sp. strain BH72. Microbiology (reading) 148:3203–3212. https://doi.org/10.1099/00221287-148-10-3203
doi: 10.1099/00221287-148-10-3203
Fei Q, Guarnieri MT, Tao L, Laurens LM, Dowe N, Pienkos PT (2014) Bioconversion of natural gas to liquid fuel: opportunities and challenges. Biotechnol Adv 32:596–614. https://doi.org/10.1016/j.biotechadv.2014.03.011
doi: 10.1016/j.biotechadv.2014.03.011
pubmed: 24726715
Fei Q, Puri AW, Smith H, Dowe N, Pienkos PT (2018) Enhanced biological fixation of methane for microbial lipid production by recombinant Methylomicrobium buryatense. Biotechnol Biofuels 11:129. https://doi.org/10.1186/s13068-018-1128-6
doi: 10.1186/s13068-018-1128-6
pubmed: 29755588
pmcid: 5934843
Garg S, Wu H, Clomburg JM, Bennett GN (2018) Bioconversion of methane to C-4 carboxylic acids using carbon flux through acetyl-CoA in engineered Methylomicrobium buryatense 5GB1C. Metab Eng 48:175–183. https://doi.org/10.1016/j.ymben.2018.06.001
doi: 10.1016/j.ymben.2018.06.001
pubmed: 29883803
Hanson RS, Hanson TE (1996) Methanotrophic bacteria. Microbiol Rev 60:439–471. https://doi.org/10.1128/mr.60.2.439-471.1996
doi: 10.1128/mr.60.2.439-471.1996
pubmed: 8801441
pmcid: 239451
He Q, Yang Y, Yang S, Donohoe BS, Van Wychen S, Zhang M, Himmel ME, Knoshaug EP (2018) Oleaginicity of the yeast strain Saccharomyces cerevisiae D5A. Biotechnol Biofuels 11:258. https://doi.org/10.1186/s13068-018-1256-z
doi: 10.1186/s13068-018-1256-z
pubmed: 30258492
pmcid: 6151946
Hu LZ, Guo SQ, Yan X, Zhang TQ, Xiang J, Fei Q (2021) Exploration of an efficient electroporation system for heterologous gene expression in the genome of methanotroph. Front Microbiol 12:717033. https://doi.org/10.3389/fmicb.2021.717033
doi: 10.3389/fmicb.2021.717033
pubmed: 34421878
pmcid: 8373458
Hu LZ, Yang YF, Yan X, Zhang TQ, Xiang J, Gao ZX, Chen YH, Yang SH, Fei Q (2020) Molecular mechanism associated with the impact of methane/oxygen gas supply ratios on cell growth of Methylomicrobium buryatense 5GB1 through RNA-Seq. Front Bioeng Biotechnol 8:263. https://doi.org/10.3389/fbioe.2020.00263
doi: 10.3389/fbioe.2020.00263
pubmed: 32318556
pmcid: 7154130
Ikeda S, Sasaki K, Okubo T, Yamashita A, Terasawa K, Bao Z, Liu D, Watanabe T, Murase J, Asakawa S, Eda S, Mitsui H, Sato T, Minamisawa K (2014) Low nitrogen fertilization adapts rice root microbiome to low nutrient environment by changing biogeochemical functions. Microbes Environ 29:50–59. https://doi.org/10.1264/jsme2.me13110
doi: 10.1264/jsme2.me13110
pubmed: 24463575
pmcid: 4041235
Izumi A, Schnell R, Schneider G (2012) Crystal structure of NirD, the small subunit of the nitrite reductase NirbD from Mycobacterium tuberculosis at 2.0 Å resolution. Proteins 80:2799–2803. https://doi.org/10.1002/prot.24177
doi: 10.1002/prot.24177
pubmed: 22965870
Jung GY, Rhee SK, Han YS, Kim SJ (2020) Genomic and physiological properties of a facultative methane-oxidizing bacterial strain of Methylocystis sp. from a wetland. Microorganisms 8:1719. https://doi.org/10.3390/microorganisms8111719
doi: 10.3390/microorganisms8111719
pmcid: 7716213
Kalyuzhnaya MG, Puri AW, Lidstrom ME (2015) Metabolic engineering in methanotrophic bacteria. Metab Eng 29:142–152. https://doi.org/10.1016/j.ymben.2015.03.010
doi: 10.1016/j.ymben.2015.03.010
pubmed: 25825038
Kang SO, Roe JH, Lee JW, Koh YS, Koo MS, Lee JH, Lee KL, Koh YS, Kang SO, Roe JH (2003) A reducing system of the superoxide sensor SoxR in Escherichia coli. EMBO J 22:2614–2622. https://doi.org/10.1093/emboj/cdg252
doi: 10.1093/emboj/cdg252
pubmed: 12773378
pmcid: 156749
Kaur S, Mishra MN, Tripathi AK (2009) Regulation of expression and biochemical characterization of a beta-class carbonic anhydrase from the plant growth-promoting rhizobacterium, Azospirillum brasilense Sp7. FEMS Microbiol Lett 299:149–158. https://doi.org/10.1111/j.1574-6968.2009.01736.x
doi: 10.1111/j.1574-6968.2009.01736.x
pubmed: 19694814
Lin M, Yan Y, Lu W, Zhan Y, Elmerich C (2015) Regulatory coupling of nitrogen and carbon metabolism in nitrogen-fixing Pseudomonas stutzeri A1501. In: Bruijn FJD (ed) Biological nitrogen fixation. John Wiley & Sons, Hoboken, pp 109–119
doi: 10.1002/9781119053095.ch10
Liu Y, He X, Zhu P, Cheng M, Hong Q, Yan X (2020) pheS
doi: 10.3389/fmicb.2020.00441
pubmed: 32296398
pmcid: 7136838
Loroch AI, Nguyen BG, Ludwig RA (1995) Interactive regulation of Azorhizobium nifA transcription via overlapping promoters. J Bacteriol 177(24):7210–7221. https://doi.org/10.1128/jb.177.24.7210-7221.1995
doi: 10.1128/jb.177.24.7210-7221.1995
pubmed: 8522530
pmcid: 177602
Luesken FA, Wu ML, Op DCH, Keltjens JT, Stunnenberg H, Francoijs KJ, Strous M, Jetten MS (2012) Effect of oxygen on the anaerobic methanotroph 'Candidatus Methylomirabilis oxyfera’: kinetic and transcriptional analysis. Environ Microbiol 14:1024–1034. https://doi.org/10.1111/j.1462-2920.2011.02682.x
doi: 10.1111/j.1462-2920.2011.02682.x
pubmed: 22221911
Matsen JB, Yang S, Stein LY, Beck D, Kalyuzhnaya MG (2013) Global molecular analyses of methane metabolism in methanotrophic alphaproteobacterium, Methylosinus trichosporium OB3b. Part i: Transcriptomic Study. Front Microbiol 4:40. https://doi.org/10.3389/fmicb.2013.00040
doi: 10.3389/fmicb.2013.00040
pubmed: 23565111
pmcid: 3615186
Nguyen AD, Lee EY (2021) Engineered methanotrophy: a sustainable solution for methane-based industrial biomanufacturing. Trends Biotechnol 39:381–396. https://doi.org/10.1016/j.tibtech.2020.07.007
doi: 10.1016/j.tibtech.2020.07.007
pubmed: 32828555
Puri AW, Owen S, Chu F, Chavkin T, Beck DA, Kalyuzhnaya MG, Lidstrom ME (2015) Genetic tools for the industrially promising methanotroph Methylomicrobium buryatense. Appl Environ Microbiol 81:1775–1781. https://doi.org/10.1128/AEM.03795-14
doi: 10.1128/AEM.03795-14
pubmed: 25548049
pmcid: 4325140
Rutten PJ, Poole PS (2019) Oxygen regulatory mechanisms of nitrogen fixation in rhizobia. Adv Microb Physiol 75:325–389. https://doi.org/10.1016/bs.ampbs.2019.08.001
doi: 10.1016/bs.ampbs.2019.08.001
pubmed: 31655741
Sarkar A, Reinhold-Hurek B (2014) Transcriptional profiling of nitrogen fixation and the role of NifA in the diazotrophic endophyte Azoarcus sp. strain BH72. PLoS One 9:e86527. https://doi.org/10.1371/journal.pone.0086527
doi: 10.1371/journal.pone.0086527
pubmed: 24516534
pmcid: 3916325
Schmehl M, Jahn A, Vilsendorf A, Hennecke S, Masepohl B, Schuppler M, Marxer M, Oelze J, Klipp W (1993) Identification of a new class of nitrogen fixation genes in Rhodobacter capsalatus: a putative membrane complex involved in electron transport to nitrogenase. Mol Gen Genet 241:602–615. https://doi.org/10.1007/BF00279903
doi: 10.1007/BF00279903
pubmed: 8264535
Shi MM, Gao T, Ju LL, Yao YL, Gao HC (2014) Effects of FlrBC on flagellar biosynthesis of Shewanella oneidensis. Mol Microbiol 93:1269–1283. https://doi.org/10.1111/mmi.12731
doi: 10.1111/mmi.12731
pubmed: 25074236
Shimizu T, Teramoto H, Inui M (2019) Engineering the transcriptional activator NifA for the construction of Rhodobacter sphaeroides strains that produce hydrogen gas constitutively. Appl Microbiol Biotechnol 103(23–24):9739–9749. https://doi.org/10.1007/s00253-019-10199-1
doi: 10.1007/s00253-019-10199-1
pubmed: 31696284
Yang SH, Vera JM, Grass J, Savvakis G, Moskvin OV, Yang Y, McIlwain SJ, Lyu Y, Zinonos I, Hebert AS, Coon JJ, Bates DM, Sato TK, Brown SD, Himmel ME, Zhang M, Landick R, Pappas KM, Zhang YP (2018) Complete genome sequence and the expression pattern of plasmids of the model ethanologen Zymomonas mobilis ZM4 and its xylose-utilizing derivatives 8b and 2032. Biotechnol Biofuels 11:125. https://doi.org/10.1186/s13068-018-1116-x
doi: 10.1186/s13068-018-1116-x
pubmed: 29743953
pmcid: 5930841
Zhu J, Xu X, Yuan M, Wu H, Ma Z, Wu W (2017) Optimum O
doi: 10.3389/fmicb.2017.01112
pubmed: 28670305
pmcid: 5472701