Longitudinal shear wave elasticity measurements of millimeter-sized biomaterials using a single-element transducer platform.
Journal
PloS one
ISSN: 1932-6203
Titre abrégé: PLoS One
Pays: United States
ID NLM: 101285081
Informations de publication
Date de publication:
2022
2022
Historique:
received:
02
12
2021
accepted:
16
03
2022
entrez:
6
4
2022
pubmed:
7
4
2022
medline:
15
4
2022
Statut:
epublish
Résumé
Temporal variations of the extracellular matrix (ECM) stiffness profoundly impact cellular behaviors, possibly more significantly than the influence of static stiffness. Three-dimensional (3D) cell cultures with tunable matrix stiffness have been utilized to characterize the mechanobiological interactions of elasticity-mediated cellular behaviors. Conventional studies usually perform static interrogations of elasticity at micro-scale resolution. While such studies are essential for investigations of cellular mechanotransduction, few tools are available for depicting the temporal dynamics of the stiffness of the cellular environment, especially for optically turbid millimeter-sized biomaterials. We present a single-element transducer shear wave (SW) elasticity imaging system that is applied to a millimeter-sized, ECM-based cell-laden hydrogel. The single-element ultrasound transducer is used both to generate SWs and to detect their arrival times after being reflected from the side boundaries of the sample. The sample's shear wave speed (SWS) is calculated by applying a time-of-flight algorithm to the reflected SWs. We use this noninvasive and technically straightforward approach to demonstrate that exposing 3D cancer cell cultures to X-ray irradiation induces a temporal change in the SWS. The proposed platform is appropriate for investigating in vitro how a group of cells remodels their surrounding matrix and how changes to their mechanical properties could affect the embedded cells in optically turbid millimeter-sized biomaterials.
Identifiants
pubmed: 35385536
doi: 10.1371/journal.pone.0266235
pii: PONE-D-21-37919
pmc: PMC8985960
doi:
Substances chimiques
Biocompatible Materials
0
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
e0266235Déclaration de conflit d'intérêts
The authors have declared that no competing interests exist.
Références
Front Mol Biosci. 2020 Jan 31;6:160
pubmed: 32118030
Cancers (Basel). 2021 Nov 05;13(21):
pubmed: 34771711
J Biophotonics. 2019 Mar;12(3):e201800250
pubmed: 30417604
Nat Med. 2018 May;24(5):541-550
pubmed: 29686425
Physiology (Bethesda). 2018 Jan 1;33(1):16-25
pubmed: 29212889
Nat Protoc. 2012 Nov;7(11):2056-66
pubmed: 23099487
J Vis Exp. 2017 Aug 16;(126):
pubmed: 28872146
Sci Rep. 2017 Dec;7(1):165
pubmed: 28279018
Acta Biomater. 2013 Jan;9(1):4635-44
pubmed: 22902816
Sci Adv. 2020 Sep 11;6(37):
pubmed: 32917705
Nat Mater. 2010 Jun;9(6):518-26
pubmed: 20418863
Nat Commun. 2016 Feb 24;7:10809
pubmed: 26904963
Magn Reson Med. 2005 Sep;54(3):605-15
pubmed: 16088876
IEEE Trans Ultrason Ferroelectr Freq Control. 2004 Apr;51(4):396-409
pubmed: 15139541
Diagn Interv Imaging. 2013 May;94(5):487-95
pubmed: 23619292
Nat Protoc. 2021 May;16(5):2418-2449
pubmed: 33854255
Clin Anat. 2010 Jul;23(5):497-511
pubmed: 20544947
Ultrasound Med Biol. 2003 Oct;29(10):1387-96
pubmed: 14597335
Cold Spring Harb Perspect Biol. 2011 Dec 01;3(12):
pubmed: 21917992
Phys Med Biol. 2004 Mar 21;49(6):911-22
pubmed: 15104315
Springerplus. 2016 Aug 12;5(1):1341
pubmed: 27588234
Bioeng Transl Med. 2019 Dec 09;5(1):e10148
pubmed: 31989037
Cell Adh Migr. 2012 Sep-Oct;6(5):424-32
pubmed: 23076050
J Cell Sci. 2017 Jan 1;130(1):292-302
pubmed: 27505887
Oncogene. 2016 Mar 17;35(11):1353-62
pubmed: 26073085
Radiother Oncol. 2011 Jun;99(3):271-8
pubmed: 21704412
Tissue Eng Part C Methods. 2014 Aug;20(8):611-9
pubmed: 24266395
Biomaterials. 2021 Feb;269:120676
pubmed: 33485213
Sci Rep. 2018 Sep 27;8(1):14470
pubmed: 30262836
Nat Photonics. 2007 Dec 9;2:39-43
pubmed: 19812712
Biol Methods Protoc. 2021 Jul 21;6(1):bpab014
pubmed: 34377838
J Biomed Opt. 2020 Mar;25(3):1-13
pubmed: 32189479
Proc Natl Acad Sci U S A. 2014 Mar 18;111(11):3949-54
pubmed: 24594603
Nat Mater. 2016 Mar;15(3):318-25
pubmed: 26618883
Biomed Opt Express. 2012 Mar 1;3(3):473-87
pubmed: 22435096
Proc Natl Acad Sci U S A. 2018 Jan 30;115(5):861-866
pubmed: 29339488
Biomed Opt Express. 2014 Oct 06;5(11):3807-21
pubmed: 25426312
IEEE Trans Ultrason Ferroelectr Freq Control. 2002 Apr;49(4):436-46
pubmed: 11989699
Appl Phys Lett. 2016 Jul 25;109(4):043701
pubmed: 27493276
Biomaterials. 2012 Apr;33(10):2835-47
pubmed: 22248989
Nat Rev Cancer. 2015 Jul;15(7):409-25
pubmed: 26105538
Biophys J. 2010 Oct 20;99(8):L65-7
pubmed: 20959077
Ultraschall Med. 2013 Apr;34(2):169-84
pubmed: 23558397
J Hematol Oncol. 2019 Nov 8;12(1):112
pubmed: 31703598
IEEE Trans Ultrason Ferroelectr Freq Control. 2004 Aug;51(8):980-9
pubmed: 15346586
Opt Express. 2016 Aug 22;24(17):18860-71
pubmed: 27557169