Personalized bioceramic grafts for craniomaxillofacial bone regeneration.


Journal

International journal of oral science
ISSN: 2049-3169
Titre abrégé: Int J Oral Sci
Pays: India
ID NLM: 101504351

Informations de publication

Date de publication:
31 Oct 2024
Historique:
received: 24 04 2024
accepted: 20 09 2024
revised: 16 09 2024
medline: 1 11 2024
pubmed: 1 11 2024
entrez: 1 11 2024
Statut: epublish

Résumé

The reconstruction of craniomaxillofacial bone defects remains clinically challenging. To date, autogenous grafts are considered the gold standard but present critical drawbacks. These shortcomings have driven recent research on craniomaxillofacial bone reconstruction to focus on synthetic grafts with distinct materials and fabrication techniques. Among the various fabrication methods, additive manufacturing (AM) has shown significant clinical potential. AM technologies build three-dimensional (3D) objects with personalized geometry customizable from a computer-aided design. These layer-by-layer 3D biomaterial structures can support bone formation by guiding cell migration/proliferation, osteogenesis, and angiogenesis. Additionally, these structures can be engineered to degrade concomitantly with the new bone tissue formation, making them ideal as synthetic grafts. This review delves into the key advances of bioceramic grafts/scaffolds obtained by 3D printing for personalized craniomaxillofacial bone reconstruction. In this regard, clinically relevant topics such as ceramic-based biomaterials, graft/scaffold characteristics (macro/micro-features), material extrusion-based 3D printing, and the step-by-step workflow to engineer personalized bioceramic grafts are discussed. Importantly, in vitro models are highlighted in conjunction with a thorough examination of the signaling pathways reported when investigating these bioceramics and their effect on cellular response/behavior. Lastly, we summarize the clinical potential and translation opportunities of personalized bioceramics for craniomaxillofacial bone regeneration.

Identifiants

pubmed: 39482290
doi: 10.1038/s41368-024-00327-7
pii: 10.1038/s41368-024-00327-7
doi:

Substances chimiques

Biocompatible Materials 0
Bone Substitutes 0

Types de publication

Journal Article Review

Langues

eng

Sous-ensembles de citation

IM

Pagination

62

Subventions

Organisme : U.S. Department of Health & Human Services | NIH | National Institute of Dental and Craniofacial Research (NIDCR)
ID : R01DE031476

Informations de copyright

© 2024. The Author(s).

Références

Oryan, A., Alidadi, S., Moshiri, A. & Maffulli, N. Bone regenerative medicine: classic options, novel strategies, and future directions. J. Orthop. Surg. Res. [Internet] 9, 18 (2014).
pubmed: 24628910 doi: 10.1186/1749-799X-9-18
Mahmoud, A. H. et al. Nanoscale β-TCP-Laden GelMA/PCL composite membrane for guided bone regeneration. ACS Appl. Mater. Interfaces 15, 32121–32135 (2023).
pubmed: 37364054 pmcid: 10982892 doi: 10.1021/acsami.3c03059
Fischer, N. G., Münchow, E. A., Tamerler, C., Bottino, M. C. & Aparicio, C. Harnessing biomolecules for bioinspired dental biomaterials. J. Mater. Chem. B. 8, 8713–8747 (2020).
pubmed: 32747882 pmcid: 7544669 doi: 10.1039/D0TB01456G
Bottino, M.C. & Thomas, V. Membranes for periodontal regeneration–a materials perspective. Front Oral Biol. 17, 90–100 (2015).
pubmed: 26201279 doi: 10.1159/000381699
Aytac, Z. et al. Innovations in craniofacial bone and periodontal tissue engineering—from electrospinning to converged biofabrication. Int. Mater. Rev. [Internet] 67, 347–384 (2022).
pubmed: 35754978 doi: 10.1080/09506608.2021.1946236
Dalfino, S. et al. Regeneration of critical‐sized mandibular defects using 3D‐printed composite scaffolds: a quantitative evaluation of new bone formation in in vivo studies. Adv. Healthc. Mater [Internet]. 15, 12 (2023).
de Souza Araújo, I. J. et al. Self-assembling peptide-laden electrospun scaffolds for guided mineralized tissue regeneration. Dent. Mater. 38, 1749–1762 (2022).
pubmed: 36180310 pmcid: 9881689 doi: 10.1016/j.dental.2022.09.011
Dubey, N. et al. Highly tunable bioactive fiber-reinforced hydrogel for guided bone regeneration. Acta Biomater. 113, 164–176 (2020).
pubmed: 32540497 pmcid: 7482137 doi: 10.1016/j.actbio.2020.06.011
Dubey, N., Ferreira, J. A., Malda, J., Bhaduri, S. B. & Bottino, M. C. Extracellular matrix/amorphous magnesium phosphate bioink for 3D bioprinting of craniomaxillofacial bone tissue. ACS Appl. Mater. Interfaces 12, 23752–23763 (2020).
pubmed: 32352748 pmcid: 7364626 doi: 10.1021/acsami.0c05311
Verykokou, S., Ioannidis, C. & Angelopoulos, C. CBCT-based design of patient-specific 3D bone grafts for periodontal regeneration. J. Clin. Med. [Internet] 12, 5023 (2023).
pubmed: 37568425 doi: 10.3390/jcm12155023
Wang, C. et al. 3D printing of bone tissue engineering scaffolds. Bioact. Mater. [Internet] 5, 82–91 (2020).
pubmed: 31956737 doi: 10.1016/j.bioactmat.2020.01.004
Schulz, M. C. et al. Three-dimensional plotted calcium phosphate scaffolds for bone defect augmentation—a new method for regeneration. J. Pers. Med [Internet] 13, 464 (2023).
pubmed: 36983646 doi: 10.3390/jpm13030464
Anderson, M. et al. Three-dimensional printing of clinical scale and personalized calcium phosphate scaffolds for alveolar bone reconstruction. Dent. Mater. [Internet] 38, 529–539, (2022).
pubmed: 35074166 doi: 10.1016/j.dental.2021.12.141
Patel, S. Y., Kim, D. D. & Ghali, G. E. Maxillofacial reconstruction using vascularized fibula free flaps and endosseous implants. Oral Maxillofac. Surg. Clin. North Am. [Internet]. 2019 May 1 [cited 2023 Nov 4];31:259–284. http://www.ncbi.nlm.nih.gov/pubmed/30846345 .
Orciani, M., Fini, M., Di Primio, R. & Mattioli-Belmonte, M. Biofabrication and bone tissue regeneration: cell source, approaches, and challenges. Front Bioeng Biotechnol [Internet]. (2017) Mar 23,5. http://journal.frontiersin.org/article/10.3389/fbioe.2017.00017/full .
Bhumiratana, S. & Vunjak-Novakovic, G. Concise review: personalized human bone grafts for reconstructing head and face. Stem Cells Transl. Med [Internet] 1, 64–69, (2012).
pubmed: 23197642 doi: 10.5966/sctm.2011-0020
Babaie, E. & Bhaduri, S. B. Fabrication aspects of porous biomaterials in orthopedic applications: a review. ACS Biomater. Sci. Eng. 4, 1–39 (2018).
pubmed: 33418675 doi: 10.1021/acsbiomaterials.7b00615
Cheng, L. et al. 3D printing of micro- and nanoscale bone substitutes: a review on technical and translational perspectives. Int. J. Nanomed. 16, 4289–4319 (2021).
doi: 10.2147/IJN.S311001
ISO/ASTM. Standard terminology for additive manufacturing–general principles–terminology. International Organization for Standardization, 52900–52915 Geneva, Switzerland; 2015.
Bose, S. et al. 3D printing of ceramics: advantages, challenges, applications, and perspectives. J. Am. Ceramic Soc. 2 (2024).
Tao, O. et al. The applications of 3D printing for craniofacial tissue engineering. Micromachines (Basel) [Internet] 10, 480 (2019).
doi: 10.3390/mi10070480
Hench, L. L., Splinter, R. J., Allen, W. C. & Greenlee, T. K. Bonding mechanisms at the interface of ceramic prosthetic materials. J. Biomed. Mater. Res [Internet] 5, 117–141 (1971).
doi: 10.1002/jbm.820050611
Hench, L. L. Bioceramics: from concept to clinic. J. Am. Ceram. Soc. [Internet] 74, 1487–1510 (1991).
doi: 10.1111/j.1151-2916.1991.tb07132.x
Baino, F., Novajra, G. & Vitale-Brovarone C. Bioceramics and scaffolds: a winning combination for tissue engineering. Front Bioeng. Biotechnol. [Internet]. 17, 3 (2015).
Gul, H., Khan, M. & Khan, A. S. Bioceramics: types and clinical applications. In: Handbook of Ionic Substituted Hydroxyapatites [Internet] 53–83 (Elsevier, 2020). https://linkinghub.elsevier.com/retrieve/pii/B9780081028346000033 .
Kumar, A., Kargozar, S., Baino, F. & Han, S. S. Additive manufacturing methods for producing hydroxyapatite and hydroxyapatite-based composite scaffolds: a review. Front Mater. 17, 6 (2019).
Barrère, F., van Blitterswijk, C. A. & de Groot, K. Bone regeneration: molecular and cellular interactions with calcium phosphate ceramics. Int. J. Nanomed. [Internet] 1, 317–332, (2006).
Elliott, J. C. Structure and chemistry of the apatites and other calcium orthophosphates (Elsevier, 2013).
Descamps, M., Hornez, J. C. & Leriche, A. Effects of powder stoichiometry on the sintering of β-tricalcium phosphate. J. Eur. Ceram. Soc. [Internet] 27, 2401–2406, (2007).
doi: 10.1016/j.jeurceramsoc.2006.09.005
Chaair, H., Labjar, H. & Britel, O. Synthesis of β-tricalcium phosphate. Morphologie [Internet] 101, 120–124, http://www.ncbi.nlm.nih.gov/pubmed/28942348 (2017).
Carrodeguas, R. G. & De Aza, S. α-Tricalcium phosphate: synthesis, properties and biomedical applications. Acta Biomater. [Internet] 7, 3536–3546, (2011).
pubmed: 21712105 doi: 10.1016/j.actbio.2011.06.019
Dorozhkin, S. V. Calcium orthophosphates as bioceramics: state of the art. J. Funct. Biomater. [Internet] 1, 22–107, (2010).
pubmed: 24955932 doi: 10.3390/jfb1010022
Bohner, M., Santoni, B. L. G. & Döbelin, N. β-tricalcium phosphate for bone substitution: synthesis and properties. Acta Biomater. [Internet] 113, 23–41, (2020).
pubmed: 32565369 doi: 10.1016/j.actbio.2020.06.022
Zhou, H., Yang, L., Gbureck, U. & Bhaduri, S. B. Sikder P. Monetite, an important calcium phosphate compound–Its synthesis, properties and applications in orthopedics. Acta Biomater. 127, 41–55 (2021).
pubmed: 33812072 doi: 10.1016/j.actbio.2021.03.050
Hou, X. et al. Calcium phosphate-based biomaterials for bone repair. J. Funct. Biomater. 13, 187 (2022).
pubmed: 36278657 doi: 10.3390/jfb13040187
Litak, J. et al. Hydroxyapatite use in spine surgery—molecular and clinical aspect. Materials 15, 2906 (2022).
pubmed: 35454598 doi: 10.3390/ma15082906
Funayama, T., Noguchi, H., Kumagai, H., Sato, K., Yoshioka, T. & Yamazaki, M. et al. Unidirectional porous beta-tricalcium phosphate and hydroxyapatite artificial bone: a review of experimental evaluations and clinical applications. J. Artif. Organs 24, 103–110 (2021).
pubmed: 33893573 doi: 10.1007/s10047-021-01270-8
Kijartorn, P., Wongpairojpanich, J., Thammarakcharoen, F., Suwanprateeb, J. & Buranawat, B. Clinical evaluation of 3D printed nano-porous hydroxyapatite bone graft for alveolar ridge preservation: a randomized controlled trial. J. Dent. Sci. 17, 194–203 (2022).
pubmed: 35028038 doi: 10.1016/j.jds.2021.05.003
Bonardi, J. P. et al. Clinical assessment of biphasic calcium phosphate in granules and paste forms in human maxillary sinus bone augmentation: a randomized, split-mouth clinical trial. Materials 16, 1059 (2023).
pubmed: 36770066 doi: 10.3390/ma16031059
Richter, R. F., Ahlfeld, T., Gelinsky, M. & Lode, A. Composites consisting of calcium phosphate cements and mesoporous bioactive glasses as a 3D plottable drug delivery system. Acta Biomater. 156, 146–157 (2023).
pubmed: 35063708 doi: 10.1016/j.actbio.2022.01.034
Liu, D., Cui, C., Chen, W., Shi, J., Li, B. & Chen, S. Biodegradable cements for bone regeneration. J. Funct. Biomater. 14, 134 (2023).
pubmed: 36976058 doi: 10.3390/jfb14030134
Oliveira, R. L. M. S. & Motisuke, M. Using round α-TCP granules for improving CPC injectability. Mater. Res. Express [Internet] 6, 125407 (2019).
doi: 10.1088/2053-1591/ab56ac
Ginebra, M. P. Calcium phosphate bone cements. In: Orthopaedic Bone Cements [Internet]. 206–230 (Elsevier, 2008). https://linkinghub.elsevier.com/retrieve/pii/B9781845693763500101 .
Klammert, U., Reuther, T., Jahn, C., Kraski, B., Kübler, A. C. & Gbureck, U. Cytocompatibility of brushite and monetite cell culture scaffolds made by three-dimensional powder printing. Acta Biomater. 5, 727–734 (2009).
pubmed: 18835228 doi: 10.1016/j.actbio.2008.08.019
Castilho, M. et al. Direct 3D powder printing of biphasic calcium phosphate scaffolds for substitution of complex bone defects. Biofabrication 6, 015006 (2014).
pubmed: 24429776 doi: 10.1088/1758-5082/6/1/015006
Al-Sanabani, J. S., Madfa, A. A. & Al-Sanabani, F. A. Application of calcium phosphate materials in dentistry. Int. J. Biomater. 2013, 1–12 (2013).
doi: 10.1155/2013/876132
Barinov, S. M. & Komlev, V. S. Calcium phosphate bone cements. Inorg. Mater. 47, 1470–1485 (2011).
doi: 10.1134/S0020168511130024
Lukina, Y., Safronova, T., Smolentsev, D. & Toshev, O. Calcium phosphate cements as carriers of functional substances for the treatment of bone tissue. Materials 16, 4017 (2023).
pubmed: 37297151 doi: 10.3390/ma16114017
Vezenkova, A. & Locs, J. Sudoku of porous, injectable calcium phosphate cements—path to osteoinductivity. Bioact. Mater. 17, 109–124 (2022).
pubmed: 35386461
Cao, W. & Hench, L. L. Bioactive Materials. 22, (Ceramics International, 1996).
Kaur, G., Pandey, O. P., Singh, K., Homa, D., Scott, B. & Pickrell, G. A review of bioactive glasses: their structure, properties, fabrication and apatite formation. J. Biomed. Mater. Res. A 102, 254–274 (2014).
pubmed: 23468256 doi: 10.1002/jbm.a.34690
Jones, J. R. Reprint of: review of bioactive glass: from Hench to hybrids. Acta Biomater. 23, S53–S82 (2015).
pubmed: 26235346 doi: 10.1016/j.actbio.2015.07.019
Arcos, D. & Vallet-Regí, M. Sol-gel silica-based biomaterials and bone tissue regeneration. Acta Biomater. [Internet] 6, 2874–2888, (2010).
pubmed: 20152946 doi: 10.1016/j.actbio.2010.02.012
Rouquerol, J. et al. Recommendations for the characterization of porous solids (Technical Report). Pure Appl. Chem. 66, 1739–1758 (1994).
doi: 10.1351/pac199466081739
Migneco, C., Fiume, E., Verné, E. & Baino, F. A guided walk through the world of mesoporous bioactive glasses (MBGs): fundamentals, processing, and applications. Nanomaterials [Internet] 10, 2571 (2020).
pubmed: 33371415 doi: 10.3390/nano10122571
Baino, F. & Fiume, E. 3D printing of hierarchical scaffolds based on mesoporous bioactive glasses (MBGs)—fundamentals and applications. Materials [Internet] 13, 1688 (2020).
pubmed: 32260374 doi: 10.3390/ma13071688
Yan, X., Yu, C., Zhou, X., Tang, J. & Zhao, D. Highly ordered mesoporous bioactive glasses with superior in vitro bone‐forming bioactivities. Angew. Chem. Int. Ed. [Internet] 43, 5980–5984 (2004).
doi: 10.1002/anie.200460598
Rahimnejad, M., Charbonneau, C., He, Z. & Lerouge, S. Injectable cell‐laden hybrid bioactive scaffold containing bioactive glass microspheres. J. Biomed. Mater. Res. A 111, 1031–1043 (2023).
pubmed: 36597835 doi: 10.1002/jbm.a.37487
Vallet-Regí, M. Ordered mesoporous materials in the context of drug delivery systems and bone tissue engineering. Chemistry [Internet] 12, 5934–5943, (2006).
pubmed: 16832799 doi: 10.1002/chem.200600226
Salinas, A. J., Shruti, S., Malavasi, G., Menabue, L. & Vallet-Regí, M. Substitutions of cerium, gallium and zinc in ordered mesoporous bioactive glasses. Acta Biomater. [Internet] 7, 3452–3458, (2011).
pubmed: 21672640 doi: 10.1016/j.actbio.2011.05.033
Wu, C. & Chang, J. Mesoporous bioactive glasses: structure characteristics, drug/growth factor delivery and bone regeneration application. Interface Focus [Internet] 2, 292–306, (2012).
pubmed: 23741607 doi: 10.1098/rsfs.2011.0121
Wu, C. & Chang, J. Multifunctional mesoporous bioactive glasses for effective delivery of therapeutic ions and drug/growth factors. J. Controlled Release [Internet] 193, 282–295, (2014).
doi: 10.1016/j.jconrel.2014.04.026
Kargozar, S., Montazerian, M., Hamzehlou, S., Kim, H. W. & Baino, F. Mesoporous bioactive glasses: promising platforms for antibacterial strategies. Acta Biomater. [Internet] 81, 1–19, (2018).
pubmed: 30273742 doi: 10.1016/j.actbio.2018.09.052
Bano, S. et al. Synthesis and characterization of silver–strontium (Ag-Sr)-doped mesoporous bioactive glass nanoparticles. Gels [Internet] 7, 34 (2021).
pubmed: 33805013 doi: 10.3390/gels7020034
Ciraldo, F. E. et al. Fabrication and characterization of Ag- and Ga-doped mesoporous glass-coated scaffolds based on natural marine sponges with improved mechanical properties. J. Biomed. Mater. Res A [Internet] 109, 1309–1327, (2021).
pubmed: 33085223 doi: 10.1002/jbm.a.37123
Sánchez-Salcedo, S., García, A., González-Jiménez, A. & Vallet-Regí, M. Antibacterial effect of 3D printed mesoporous bioactive glass scaffolds doped with metallic silver nanoparticles. Acta Biomater [Internet]. 155, 654–666 (2023).
Anand, A., Kaňková, H., Hájovská, Z., Galusek, D., Boccaccini, A. R. & Galusková, D. Bio-response of copper–magnesium co-substituted mesoporous bioactive glass for bone tissue regeneration. J. Mater. Chem. B 12, 1875–1891 (2024).
pubmed: 38293829 doi: 10.1039/D3TB01568H
Shearer, A., Montazerian, M., Sly, J. J., Hill, R. G. & Mauro, J. C. Trends and perspectives on the commercialization of bioactive glasses. Acta Biomater. 160, 14–31 (2023).
pubmed: 36804821 doi: 10.1016/j.actbio.2023.02.020
Cannio, M., Bellucci, D., Roether, J. A. Boccaccini, D. N. & Cannillo, V. Bioactive glass applications: a literature review of human clinical trials. Materials 14, 5440 (2021).
Jones, J. R. & Gibsonm, I. R. Ceramics, glasses, and glass-ceramics. In: Biomaterials Science Elsevier; 2020. 289–305.
Baino, F. Ceramics for bone replacement. In: Advances in Ceramic Biomaterials (Elsevier, 2017). 249–278.
Blair, H. C., Schlesinger, P. H., Huang, C. L. H. & Zaidi, M. Calcium signalling and calcium transport in bone disease. In: Calcium Signalling and Disease [Internet] (Springer Netherlands, 2007). 539–562. http://link.springer.com/10.1007/978-1-4020-6191-2_21 .
Chang, J., Zhang, X. & Dai, K. Material characteristics, surface/interface, and biological effects on the osteogenesis of bioactive materials. In: Bioactive Materials for Bone Regeneration [Internet]. (Elsevier, 2020). 1–103. https://linkinghub.elsevier.com/retrieve/pii/B9780128135037000017 .
Hung, C. J. et al. The role of integrin αv in proliferation and differentiation of human dental pulp cell response to calcium silicate cement. J. Endod. [Internet] 40, 1802–1809, (2014).
pubmed: 25218525 doi: 10.1016/j.joen.2014.07.016
Huang, S. C., Wu, B. C., Kao, C. T., Huang, T. H., Hung, C. J. & Shie, M. Y. Role of the p38 pathway in mineral trioxide aggregate-induced cell viability and angiogenesis-related proteins of dental pulp cell in vitro. Int. Endod. J. [Internet] 48, 236–245, (2015).
pubmed: 24773073 doi: 10.1111/iej.12305
Carlisle, E. M. Silicon: a requirement in bone formation independent of vitamin D1. Calcif. Tissue Int. [Internet] 33, 27–34, (1981).
pubmed: 6257332 doi: 10.1007/BF02409409
Youness, R. A., Tag El-deen, D. M. & Taha, M. A. A review on calcium silicate ceramics: properties, limitations, and solutions for their use in biomedical applications. Silicon [Internet] 15, 2493–2505, (2023).
doi: 10.1007/s12633-022-02207-3
Zhu, L. & Sohn, H. Y. Growth of 2M-wollastonite polycrystals by a partial melting and recrystallization process for the preparation of high-aspect-ratio particles. J. Ceram. Sci. Technol. 3, 169–180 (2012).
Almasri, K. A., Sidek, H. J. A. A., Matori, K. A. & Zaid, M. H. M. Effect of sintering temperature on physical, structural and optical properties of wollastonite based glass-ceramic derived from waste soda lime silica glasses. Results Phys. [Internet] 7, 2242–2247, (2017).
doi: 10.1016/j.rinp.2017.04.022
Saravanan, S., Vimalraj, S., Vairamani, M. & Selvamurugan, N. Role of mesoporous wollastonite (Calcium Silicate) in mesenchymal stem cell proliferation and osteoblast differentiation: a cellular and molecular study. J. Biomed. Nanotechnol. [Internet] 11, 1124–1138, (2015).
pubmed: 26307836 doi: 10.1166/jbn.2015.2057
Liu, X., Ding, C. & Chu, P. K. Mechanism of apatite formation on wollastonite coatings in simulated body fluids. Biomater. [Internet] 25, 1755–1761, (2004).
doi: 10.1016/j.biomaterials.2003.08.024
Sanmartin de Almeida, M., Fernandes, G. V., de, O., de Oliveira, A. M. & Granjeiro, J. M. Calcium silicate as a graft material for bone fractures: a systematic review. J. Int. Med. Res. [Internet] 46, 2537–2548, (2018).
pubmed: 29848121 doi: 10.1177/0300060518770940
Daniele, L. Mineral Trioxide Aggregate (MTA) direct pulp capping: 10 years clinical results. G Ital. Endod. [Internet] 31, 48–57, (2017).
doi: 10.1016/j.gien.2017.04.003
Parirokh, M., Torabinejad, M. & Dummer, P. M. H. Mineral trioxide aggregate and other bioactive endodontic cements: an updated overview – part I: vital pulp therapy. Int Endod. J. 51, 177–205 (2018).
pubmed: 28836288 doi: 10.1111/iej.12841
Lindeboom, J. A. H., Frenken, J. W. F. H., Kroon, F. H. M. & van den Akker, H. P. A comparative prospective randomized clinical study of MTA and IRM as root-end filling materials in single-rooted teeth in endodontic surgery. Oral. Surg. Oral. Med. Oral. Pathol. Oral. Radiol. Endodontol. [Internet] 100, 495–500, (2005).
doi: 10.1016/j.tripleo.2005.03.027
Baroudi, K. & Samir, S. Sealing ability of MTA used in perforation repair of permanent teeth; literature review. Open Dent. J. [Internet] 10, 278–286, (2016).
pubmed: 27347231 doi: 10.2174/1874210601610010278
Beheshtizadeh, N. et al. 3D printing of complicated GelMA-coated Alginate/Tri-calcium silicate scaffold for accelerated bone regeneration. Int. J. Biol. Macromol. [Internet] 229, 636–653, (2023).
pubmed: 36586652 doi: 10.1016/j.ijbiomac.2022.12.267
Choi, D. et al. The effects of 3-dimensional bioprinting calcium silicate cement/methacrylated gelatin scaffold on the proliferation and differentiation of human dental pulp stem cells. Materials [Internet] 15, 2170 (2022).
pubmed: 35329621 doi: 10.3390/ma15062170
Lin, K. et al. Enhanced osteoporotic bone regeneration by strontium-substituted calcium silicate bioactive ceramics. Biomater. [Internet] 34, 10028–10042, (2013).
doi: 10.1016/j.biomaterials.2013.09.056
Chiu, Y. C., Shie, M. Y., Lin, Y. H., Lee, A. K. X. & Chen, Y. W. Effect of strontium substitution on the physicochemical properties and bone regeneration potential of 3D printed calcium silicate scaffolds. Int. J. Mol. Sci. [Internet] 20, 2729 (2019).
pubmed: 31163656 doi: 10.3390/ijms20112729
Chen, L. et al. 3D printing of a lithium-calcium-silicate crystal bioscaffold with dual bioactivities for osteochondral interface reconstruction. Biomaterials [Internet] 196, 138–150, (2019).
pubmed: 29643002 doi: 10.1016/j.biomaterials.2018.04.005
Du, Z. et al. Calcium silicate scaffolds promoting bone regeneration via the doping of Mg2+ or Mn2+ ion. Compos B Eng. [Internet] 190, 107937 (2020).
doi: 10.1016/j.compositesb.2020.107937
Mabrouk, M., ElShebiney, S. A., Kenawy, S. H., El‐Bassyouni, G. T. & Hamzawy, E. M. Novel, cost‐effective, Cu‐doped calcium silicate nanoparticles for bone fracture intervention: Inherent bioactivity and in vivo performance. J. Biomed. Mater. Res. B Appl. Biomater. [Internet] 107, 388–399, (2019).
pubmed: 29656599 doi: 10.1002/jbm.b.34130
Liao, F., Peng, X. Y., Yang, F., Ke, Q. F., Zhu, Z. H. & Guo, Y. P. Gadolinium-doped mesoporous calcium silicate/chitosan scaffolds enhanced bone regeneration ability. Mater. Sci. Eng. C [Internet] 104, 109999 (2019).
doi: 10.1016/j.msec.2019.109999
Eltohamy, M., Kundu, B., Moon, J., Lee, H. Y. & Kim, H. W. Anti-bacterial zinc-doped calcium silicate cements: Bone filler. Ceram. Int. [Internet] 44, 13031–13038, (2018).
doi: 10.1016/j.ceramint.2018.04.122
Çardakli, İ. S. Lanthanum oxide doped calcium silicates particles: preparation and characterization. Süleyman Demirel Üniversitesi Fen. Bilimleri Enstitüs.ü Derg. [Internet] 25, 255–261, (2021).
doi: 10.19113/sdufenbed.811362
Bavya Devi, K. et al. Magnesium phosphate bioceramics for bone tissue engineering. Chem. Rec. 22, e202200136 (2022).
pubmed: 35866502 doi: 10.1002/tcr.202200136
Du, X., Lee, S. S., Blugan, G. & Ferguson, S. J. Silicon nitride as a biomedical material: an overview. Int. J. Mol. Sci. 23, 6551 (2022).
pubmed: 35742996 pmcid: 9224221 doi: 10.3390/ijms23126551
Sainz, M. A., Serena, S., Belmonte, M., Miranzo, P. & Osendi, M. I. Protein adsorption and in vitro behavior of additively manufactured 3D-silicon nitride scaffolds intended for bone tissue engineering. Mater. Sci. Eng. C 115, 110734 (2020).
doi: 10.1016/j.msec.2020.110734
Du, X. et al. 3D-printed PEEK/silicon nitride scaffolds with a triply periodic minimal surface structure for spinal fusion implants. ACS Appl. Bio Mater. 6, 3319–3329 (2023).
pubmed: 37561906 pmcid: 10445264 doi: 10.1021/acsabm.3c00383
Polley, C. et al. 3D printing of piezoelectric barium titanate-hydroxyapatite scaffolds with interconnected porosity for bone tissue engineering. Materials 13, 1773 (2020).
pubmed: 32283869 pmcid: 7179021 doi: 10.3390/ma13071773
Tavangar, M. et al. Manufacturing and characterization of mechanical, biological and dielectric properties of hydroxyapatite-barium titanate nanocomposite scaffolds. Ceram. Int. 46, 9086–9095 (2020).
doi: 10.1016/j.ceramint.2019.12.157
Tariverdian, T., Behnamghader, A., Brouki Milan, P., Barzegar-Bafrooei, H. & Mozafari, M. 3D-printed barium strontium titanate-based piezoelectric scaffolds for bone tissue engineering. Ceram. Int. 45, 14029–14038 (2019).
doi: 10.1016/j.ceramint.2019.04.102
Saeidi, B., Derakhshandeh, M. R., Delshad Chermahini, M. & Doostmohammadi, A. Novel porous barium titanate/nano-bioactive glass composite with high piezoelectric coefficient for bone regeneration applications. J. Mater. Eng. Perform. 29, 5420–5427 (2020).
doi: 10.1007/s11665-020-05016-0
Jindal, S., Manzoor, F., Haslam, N. & Mancuso, E. 3D printed composite materials for craniofacial implants: current concepts, challenges and future directions. Int. J. Adv. Manuf. Technol. 112, 635–653 (2021).
doi: 10.1007/s00170-020-06397-1
Berner, A. et al. Effects of scaffold architecture on cranial bone healing. Int. J. Oral. Maxillofac. Surg. [Internet] 43, 506–513, (2014).
pubmed: 24183512 doi: 10.1016/j.ijom.2013.05.008
Zhao, Y. et al. Fabrication of gelatin methacrylate/nanohydroxyapatite microgel arrays for periodontal tissue regeneration. Int. J. Nanomed. 11, 4707–4718 (2016).
doi: 10.2147/IJN.S111701
Cho, Y. S. et al. Assessment of osteogenesis for 3D-printed polycaprolactone/hydroxyapatite composite scaffold with enhanced exposure of hydroxyapatite using rat calvarial defect model. Compos Sci. Technol. [Internet] 184, 107844 (2019).
doi: 10.1016/j.compscitech.2019.107844
Lee, S., Choi, D., Shim, J. H. & Nam, W. Efficacy of three-dimensionally printed polycaprolactone/beta tricalcium phosphate scaffold on mandibular reconstruction. Sci. Rep. [Internet] 10, 4979 (2020).
pubmed: 32188900 doi: 10.1038/s41598-020-61944-w
Wu, S. C., Hsu, H. C., Hsiao, S. H. & Ho, W. F. Preparation of porous 45S5 Bioglass®-derived glass–ceramic scaffolds by using rice husk as a porogen additive. J. Mater. Sci. Mater. Med [Internet] 20, 1229–1236, (2009).
pubmed: 19160020 doi: 10.1007/s10856-009-3690-8
Chevalier, E., Chulia, D., Pouget, C. & Viana, M. Fabrication of porous substrates: a review of processes using pore forming agents in the biomaterial field. J. Pharm. Sci. [Internet] 97, 1135–1154, (2008).
pubmed: 17688274 doi: 10.1002/jps.21059
Oliveira, R. L. M. S. et al. Bioglass‐based scaffolds coated with silver nanoparticles: Synthesis, processing and antimicrobial activity. J. Biomed. Mater. Res A [Internet] 108, 2447–2459, (2020).
pubmed: 32419306 doi: 10.1002/jbm.a.36996
Fu, Q., Rahaman, M. N., Sonny Bal, B., Brown, R. F. & Day, D. E. Mechanical and in vitro performance of 13–93 bioactive glass scaffolds prepared by a polymer foam replication technique. Acta Biomater. [Internet] 4, 1854–1864, (2008).
pubmed: 18519173 doi: 10.1016/j.actbio.2008.04.019
Chen, Q. Z., Thompson, I. D. & Boccaccini, A. R. 45S5 Bioglass®-derived glass–ceramic scaffolds for bone tissue engineering. Biomaterials [Internet] 27, 2414–2425, (2006).
pubmed: 16336997 doi: 10.1016/j.biomaterials.2005.11.025
Padmanabhan, S. et al. Wollastonite/hydroxyapatite scaffolds with improved mechanical, bioactive and biodegradable properties for bone tissue engineering. Ceram. Int. [Internet] 39, 619–627 (2013).
doi: 10.1016/j.ceramint.2012.06.073
de Siqueira, L. et al. Highly porous 45S5 bioglass-derived glass–ceramic scaffolds by gelcasting of foams. J. Mater. Sci. [Internet] 53, 10718–10731 (2018).
doi: 10.1007/s10853-018-2337-x
de Siqueira, L., de Paula, C. G., Gouveia, R. F., Motisuke, M. & de Sousa Trichês, E. Evaluation of the sintering temperature on the mechanical behavior of β-tricalcium phosphate/calcium silicate scaffolds obtained by gelcasting method. J. Mech. Behav. Biomed. Mater. [Internet] 90, 635–643, (2019).
pubmed: 30502672 doi: 10.1016/j.jmbbm.2018.11.014
Lopes, J. H. et al. Hierarchical structures of β-TCP/45S5 bioglass hybrid scaffolds prepared by gelcasting. J. Mech. Behav. Biomed. Mater. [Internet] 62, 10–23, (2016).
pubmed: 27161958 doi: 10.1016/j.jmbbm.2016.04.028
Deville, S., Saiz, E. & Tomsia, A. P. Freeze casting of hydroxyapatite scaffolds for bone tissue engineering. Biomaterials [Internet] 27, 5480–5489, (2006).
pubmed: 16857254 doi: 10.1016/j.biomaterials.2006.06.028
Paula, C. G. & de, Trichês, E. S. Preparation and characterization of β-tricalcium phosphate scaffolds by freeze casting method. Cerâmica [Internet] 64, 553–558 (2018).
doi: 10.1590/0366-69132018643722415
Dash, S. R., Sarkar, R. & Bhattacharyya, S. Gel casting of hydroxyapatite with naphthalene as pore former. Ceram. Int [Internet] 41, 3775–3790, (2015).
doi: 10.1016/j.ceramint.2014.11.053
González Ocampo, J. I., Escobar Sierra, D. M. & Ossa Orozco, C. P. Porous bodies of hydroxyapatite produced by a combination of the gel-casting and polymer sponge methods. J. Adv. Res. [Internet] 7, 297–304, (2016).
pubmed: 26966570 doi: 10.1016/j.jare.2015.06.006
Zhang, L., Yang, G., Johnson, B. N. & Jia, X. Three-dimensional (3D) printed scaffold and material selection for bone repair. Acta Biomater. 84, 16–33 (2019).
pubmed: 30481607 doi: 10.1016/j.actbio.2018.11.039
Turnbull, G. et al. 3D bioactive composite scaffolds for bone tissue engineering. Bioact. Mater. [Internet] 3, 278–314, (2018).
pubmed: 29744467 doi: 10.1016/j.bioactmat.2017.10.001
Bose, S., Vahabzadeh, S. & Bandyopadhyay, A. Bone tissue engineering using 3D printing. Mater. Today [Internet] 16, 496–504, (2013).
doi: 10.1016/j.mattod.2013.11.017
Zhang, Y. et al. Mesoporous bioactive glass nanolayer-functionalized 3D-printed scaffolds for accelerating osteogenesis and angiogenesis. Nanoscale [Internet] 7, 19207–19221, (2015).
pubmed: 26525451 doi: 10.1039/C5NR05421D
Trombetta, R., Inzana, J. A., Schwarz, E. M., Kates, S. L. & Awad, H. A. 3D printing of calcium phosphate ceramics for bone tissue engineering and drug delivery. Ann. Biomed. Eng. [Internet] 45, 23–44, (2017).
pubmed: 27324800 doi: 10.1007/s10439-016-1678-3
Ngo, T. D., Kashani, A., Imbalzano, G., Nguyen, K. T. Q. & Hui, D. Additive manufacturing (3D printing): a review of materials. methods, Appl. Chall. Compos B Eng. [Internet] 143, 172–196, (2018).
Nik Md Noordin Kahar, N. N. F. et al. A review of bioceramics scaffolds for bone defects in different types of animal models: HA and β -TCP. Biomed. Phys. Eng. Express 8, 052002 (2022).
doi: 10.1088/2057-1976/ac867f
Brunello, G., Panda, S., Schiavon, L., Sivolella, S., Biasetto, L. & Del Fabbro, M. The impact of bioceramic scaffolds on bone regeneration in preclinical in vivo studies: a systematic review. Materials 13, 1500 (2020).
pubmed: 32218290 doi: 10.3390/ma13071500
Tanvir, M. A. H., Khaleque, M. A., Kim, G. H., Yoo, W. Y. & Kim, Y. Y. The role of bioceramics for bone regeneration: history, mechanisms, and future perspectives. Biomimetics 9, 230 (2024).
pubmed: 38667241 pmcid: 11048714 doi: 10.3390/biomimetics9040230
Elshazly, N., Nasr, F. E., Hamdy, A., Saied, S. & Elshazly, M. Advances in clinical applications of bioceramics in the new regenerative medicine era. World J. Clin. Cases 12, 1863–1869 (2024).
pubmed: 38660540 pmcid: 11036528 doi: 10.12998/wjcc.v12.i11.1863
Ferraz, M. P. Bone grafts in dental medicine: an overview of autografts, allografts and synthetic materials. Materials 16, 4117 (2023).
pubmed: 37297251 pmcid: 10254799 doi: 10.3390/ma16114117
Shao, H. et al. 3D robocasting magnesium-doped wollastonite/TCP bioceramic scaffolds with improved bone regeneration capacity in critical sized calvarial defects. J. Mater. Chem. B [Internet] 5, 2941–2951, (2017).
pubmed: 32263987 doi: 10.1039/C7TB00217C
Peng, E., Zhang, D. & Ding, J. Ceramic robocasting: recent achievements, potential, and future developments. Adv. Mater. [Internet]. 10, 30 (2018).
del-Mazo-Barbara, L. & Ginebra, M. P. Rheological characterisation of ceramic inks for 3D direct ink writing: a review. J. Eur. Ceram. Soc. [Internet] 41, 18–33, (2021).
doi: 10.1016/j.jeurceramsoc.2021.08.031
Galván-Chacón, V. P., Eqtesadi, S., Pajares, A., Miranda, P. & Guiberteau, F. Elucidating the role of 45S5 bioglass content in the density and flexural strength of robocast β-TCP/45S5 composites. Ceram. Int. [Internet] 44, 12717–12722, (2018).
doi: 10.1016/j.ceramint.2018.04.074
Roohani-Esfahani, S. I., Newman, P. & Zreiqat, H. Design and fabrication of 3D printed scaffolds with a mechanical strength comparable to cortical bone to repair large bone defects. Sci. Rep. [Internet] 6, 19468, https://www.nature.com/articles/srep19468 (2016).
Marques, C. F. et al. Biphasic calcium phosphate scaffolds fabricated by direct write assembly: Mechanical, anti-microbial and osteoblastic properties. J. Eur. Ceram. Soc. [Internet] 37, 359–368, (2017).
doi: 10.1016/j.jeurceramsoc.2016.08.018
Vu, A. A., Burke, D. A., Bandyopadhyay, A. & Bose, S. Effects of surface area and topography on 3D printed tricalcium phosphate scaffolds for bone grafting applications. Addit. Manuf. [Internet] 39, 101870 (2021).
pubmed: 34307059
Guo, J. et al. Cold sintering: a paradigm shift for processing and integration of ceramics. Angew. Chem. Int. Ed. [Internet] 55, 11457–11461 (2016).
Massera, J., Fagerlund, S., Hupa, L. & Hupa, M. Crystallization mechanism of the bioactive glasses, 45S5 and S53P4. Pinckney L., editor. J. Am. Ceramic Soc. [Internet]. 2012, 95, 607–613 (2012).
Nommeots-Nomm, A. & Massera, J. Glass and glass-ceramic scaffolds: manufacturing methods and the impact of crystallization on in-vitro dissolution. In: Scaffolds in Tissue Engineering - Materials, Technologies and Clinical Applications [Internet]. InTech; 2017. http://www.intechopen.com/books/scaffolds-in-tissue-engineering-materials-technologies-and-clinical-applications/glass-and-glass-ceramic-scaffolds-manufacturing-methods-and-the-impact-of-crystallization-on-in-vitr .
Ryu, H. S. et al. An improvement in sintering property of beta-tricalcium phosphate by addition of calcium pyrophosphate. Biomaterials 23, 909–914 (2002).
pubmed: 11771710 doi: 10.1016/S0142-9612(01)00201-0
Spirandeli, B. R. et al. Incorporation of 45S5 bioglass via sol-gel in β-TCP scaffolds: Bioactivity and antimicrobial activity evaluation. Mater. Sci. Eng. C [Internet] 131, 112453 (2021).
doi: 10.1016/j.msec.2021.112453
Sun, H. et al. 3D printing of calcium phosphate scaffolds with controlled release of antibacterial functions for jaw bone repair. Mater. Des. [Internet] 189, 108540 (2020).
doi: 10.1016/j.matdes.2020.108540
Oliveira, R. L. M. S. et al. 3D printing of bioactive glass S53P4/sodium alginate sintering-free scaffolds. Bioprinting [Internet] 27, e00226 (2022).
doi: 10.1016/j.bprint.2022.e00226
Silva, T. L. da, Vidart, J. M. M., Silva, M. G. C. da, Gimenes, M. L. & Vieira, M. G. A. Alginate and sericin: environmental and pharmaceutical applications. In: Biological Activities and Application of Marine Polysaccharides [Internet]. InTech; 2017. http://www.intechopen.com/books/biological-activities-and-application-of-marine-polysaccharides/alginate-and-sericin-environmental-and-pharmaceutical-applications .
Kumar, A., Akkineni, A. R., Basu, B. & Gelinsky, M. Three-dimensional plotted hydroxyapatite scaffolds with predefined architecture: comparison of stabilization by alginate cross-linking versus sintering. J. Biomater. Appl. [Internet] 30, 1168–1181, (2016).
pubmed: 26589296 doi: 10.1177/0885328215617058
Pei, P., Wei, D., Zhu, M., Du, X. & Zhu, Y. The effect of calcium sulfate incorporation on physiochemical and biological properties of 3D-printed mesoporous calcium silicate cement scaffolds. Microporous Mesoporous Mater. [Internet] 241, 11–20, (2017).
doi: 10.1016/j.micromeso.2016.11.031
Bertol, L. S., Schabbach, R. & Loureiro dos Santos, L. A. Different post-processing conditions for 3D bioprinted α-tricalcium phosphate scaffolds. J. Mater. Sci. Mater. Med [Internet] 28, 168 (2017).
pubmed: 28916883 doi: 10.1007/s10856-017-5989-1
Twohig, C. et al. A dual-ink 3D printing strategy to engineer pre-vascularized bone scaffolds in-vitro. Mater. Sci. Eng. C Mater. Biol. Appl. [Internet] 123, 111976 (2021).
pubmed: 33812604 doi: 10.1016/j.msec.2021.111976
Hayashi, K., Yanagisawa, T., Kishida, R. & Ishikawa, K. Effects of scaffold shape on bone regeneration: tiny shape differences affect the entire system. ACS Nano [Internet] 16, 11755–11768, (2022).
pubmed: 35833725 doi: 10.1021/acsnano.2c03776
Hatt, L. P., Thompson, K., Helms, J. A., Stoddart, M. J. & Armiento, A. R. Clinically relevant preclinical animal models for testing novel cranio‐maxillofacial bone 3D‐printed biomaterials. Clin. Transl. Med. [Internet] 12. https://onlinelibrary.wiley.com/doi/10.1002/ctm2.690 (2022).
Qian, G. et al. 3D printed Zn-doped mesoporous silica-incorporated Poly-L-lactic acid scaffolds for bone repair. Int. J. Bioprint [Internet] 7, 346 (2021).
pubmed: 33997435 doi: 10.18063/ijb.v7i2.346
Zhang, Y. et al. 3D gel-printed porous magnesium scaffold coated with dibasic calcium phosphate dihydrate for bone repair in vivo. J. Orthop. Transl. [Internet] 33, 13–23, (2022).
Ballouze, R. et al. Biocompatible magnesium-doped biphasic calcium phosphate for bone regeneration. J. Biomed. Mater. Res. B Appl. Biomater. [Internet] 109, 1426–1435 (2021).
pubmed: 33484103 doi: 10.1002/jbm.b.34802
Li, S. et al. Evaluation of highly carbonated hydroxyapatite bioceramic implant coatings with hierarchical micro-/nanorod topography optimized for osseointegration. Int. J. Nanomed. [Internet] ume 13, 3643–3659 (2018).
doi: 10.2147/IJN.S159989
Zhuang, Y. et al. A biomimetic zinc alloy scaffold coated with brushite for enhanced cranial bone regeneration. ACS Biomater. Sci. Eng. [Internet] 7, 893–903 (2021).
pubmed: 33715369 doi: 10.1021/acsbiomaterials.9b01895
Wang, B. et al. The study of angiogenesis stimulated by multivalent peptide ligand-modified alginate. Colloids Surf. B Biointerfaces [Internet] 154, 383–390 (2017).
pubmed: 28384617 doi: 10.1016/j.colsurfb.2017.03.049
Hao, D. et al. Rapid endothelialization of small diameter vascular grafts by a bioactive integrin-binding ligand specifically targeting endothelial progenitor cells and endothelial cells. Acta Biomater. [Internet] 108, 178–193, (2020).
pubmed: 32151698 doi: 10.1016/j.actbio.2020.03.005
Xu, Z. et al. Poly(Dopamine) coating on 3D-printed Poly-Lactic-Co-Glycolic Acid/β-tricalcium phosphate scaffolds for bone tissue engineering. Molecules [Internet] 24, 4397 (2019).
pubmed: 31810169 doi: 10.3390/molecules24234397
Ho, C. C. et al. Effect of mussel-inspired polydopamine on the reinforced properties of 3D printed β-tricalcium phosphate/polycaprolactone scaffolds for bone regeneration. J. Mater. Chem. B [Internet] 11, 72–82 (2023).
doi: 10.1039/D2TB01995G
Nayak, V. V. et al. Three-dimensional printing bioceramic scaffolds using direct-ink-writing for craniomaxillofacial bone regeneration. Tissue Eng. C Methods [Internet] 29, 332–345 (2023).
Zhang, F. et al. A review of 3D printed porous ceramics. J. Eur. Ceram. Soc. [Internet] 42, 3351–3373 (2022).
doi: 10.1016/j.jeurceramsoc.2022.02.039
Swanson, W. B. et al. Macropore design of tissue engineering scaffolds regulates mesenchymal stem cell differentiation fate. Biomaterials 272, 120769 (2021).
pubmed: 33798961 pmcid: 8068670 doi: 10.1016/j.biomaterials.2021.120769
Yang, Z. et al. Biomechanical effects of 3D-printed bioceramic scaffolds with porous gradient structures on the regeneration of alveolar bone defect: a comprehensive study. Front Bioeng. Biotechnol. 10, 882631 (2022).
pubmed: 35694236 pmcid: 9177945 doi: 10.3389/fbioe.2022.882631
Entezari, A. et al. Architectural design of 3D printed scaffolds controls the volume and functionality of newly formed bone. Adv. Healthc. Mater [Internet]. 8. https://onlinelibrary.wiley.com/doi/10.1002/adhm.201801353 (2019).
Eichholz, K. F. et al. Scaffold microarchitecture regulates angiogenesis and the regeneration of large bone defects. Biofabrication [Internet] 14, 045013 (2022).
doi: 10.1088/1758-5090/ac88a1
Hollister, S. J. Porous scaffold design for tissue engineering. Nat. Mater. 4, 518–524 (2005).
pubmed: 16003400 doi: 10.1038/nmat1421
Maliha, S. G. et al. Bone tissue engineering in the growing calvaria using dipyridamole-coated, three-dimensionally–printed bioceramic scaffolds: construct optimization and effects on cranial suture patency. Plast. Reconstr. Surg. [Internet] 145, 337e–347ee, (2020).
pubmed: 31985634 doi: 10.1097/PRS.0000000000006483
Ellermann, E., Meyer, N., Cameron, R. E. & Best S. M. In vitro angiogenesis in response to biomaterial properties for bone tissue engineering: a review of the state of the art. Regen Biomater [Internet]. 10. https://academic.oup.com/rb/article/doi/10.1093/rb/rbad027/7087108 (2023).
Marques, A., Miranda, G., Silva, F., Pinto, P. & Carvalho, Ó. Review on current limits and potentialities of technologies for biomedical ceramic scaffolds production. J. Biomed. Mater. Res B Appl. Biomater. [Internet] 109, 377–393, (2021).
pubmed: 32924277 doi: 10.1002/jbm.b.34706
Ge, R., Xun, C., Yang, J., Jia, W. & Li, Y. In vivo therapeutic effect of wollastonite and hydroxyapatite on bone defect. Biomed. Mater. [Internet] 14, 065013 (2019).
pubmed: 31491772 doi: 10.1088/1748-605X/ab4238
Barba, A. et al. Osteogenesis by foamed and 3D-printed nanostructured calcium phosphate scaffolds: effect of pore architecture. Acta Biomater. [Internet] 79, 135–147, (2018).
pubmed: 30195084 doi: 10.1016/j.actbio.2018.09.003
Fu, Z., Ouyang, L., Xu, R., Yang, Y. & Sun, W. Responsive biomaterials for 3D bioprinting: a review. Mater. Today [Internet] 52, 112–132, (2022).
doi: 10.1016/j.mattod.2022.01.001
Gu, Y. et al. Three-dimensional printed Mg-Doped β-TCP bone tissue engineering scaffolds: effects of magnesium ion concentration on osteogenesis and angiogenesis in vitro. Tissue Eng. Regen. Med [Internet] 16, 415–429 (2019).
pubmed: 31413945 doi: 10.1007/s13770-019-00192-0
Kim, S. E., Shim, K. M., Jang, K., Shim, J. H. & Kang, S. S. Three-dimensional printing-based reconstruction of a maxillary bone defect in a dog following tumor removal. Vivo (Brooklyn) [Internet] 32, 63–70, (2018).
Liu, R. et al. Effects of pore size on the mechanical and biological properties of stereolithographic 3D printed HAp bioceramic scaffold. Ceram. Int. [Internet] 47, 28924–28931 (2021).
doi: 10.1016/j.ceramint.2021.07.053
Mirkhalaf, M. et al. Redefining architectural effects in 3D printed scaffolds through rational design for optimal bone tissue regeneration. Appl. Mater. Today [Internet] 25, 101168 (2021).
doi: 10.1016/j.apmt.2021.101168
Ghayor, C., Weber, F. E. Osteoconductive microarchitecture of bone substitutes for bone regeneration revisited. Front. Physiol. [Internet]. 9. https://www.frontiersin.org/article/10.3389/fphys.2018.00960/full (2018).
Qin, H. et al. 3D printed bioceramic scaffolds: adjusting pore dimension is beneficial for mandibular bone defects repair. J. Tissue Eng. Regen. Med [Internet] 16, 409–421, (2022).
pubmed: 35156316 doi: 10.1002/term.3287
Lee, S. J. et al. Development of a three-dimensionally printed scaffold grafted with bone forming peptide-1 for enhanced bone regeneration with in vitro and in vivo evaluations. J. Colloid Interface Sci. [Internet] 539, 468–480, (2019).
pubmed: 30611042 doi: 10.1016/j.jcis.2018.12.097
Lee, D. J. et al. Effect of pore size in bone regeneration using polydopamine‐laced hydroxyapatite collagen calcium silicate scaffolds fabricated by 3D mould printing technology. Orthod. Craniofac Res. [Internet] 22, 127–133, (2019).
pubmed: 31074145 doi: 10.1111/ocr.12261
Diao, J. et al. 3D‐plotted beta‐tricalcium phosphate scaffolds with smaller pore sizes improve in vivo bone regeneration and biomechanical properties in a critical‐sized calvarial defect rat model. Adv Healthc Mater [Internet]. 7. https://onlinelibrary.wiley.com/doi/10.1002/adhm.201800441 (2018).
Wu, F. et al. Integrating pore architectures to evaluate vascularization efficacy in silicate-based bioceramic scaffolds. Regen. Biomater. 9, rbab077 (2022).
pubmed: 35480859 doi: 10.1093/rb/rbab077
Barba, A. et al. Osteoinduction by foamed and 3D-printed calcium phosphate scaffolds: effect of nanostructure and pore architecture. ACS Appl. Mater. Interfaces [Internet] 9, 41722–41736, (2017).
pubmed: 29116737 doi: 10.1021/acsami.7b14175
Bidan, C. M. et al. Geometry as a factor for tissue growth: towards shape optimization of tissue engineering scaffolds. Adv. Health. Mater. [Internet] 2, 186–194 (2013).
doi: 10.1002/adhm.201200159
Subbiah, R. et al. 3D printing of microgel‐loaded modular microcages as instructive scaffolds for tissue engineering. Adv. Mater. [Internet]. 32. (2020).
Li, T. et al. 3D printing of hot dog‐like biomaterials with hierarchical architecture and distinct bioactivity. Adv. Sci. [Internet]. 2019 Oct 8;6. https://onlinelibrary.wiley.com/doi/10.1002/advs.201901146 (2019).
Korn, P. et al. 3D printing of bone grafts for cleft alveolar osteoplasty – in vivo evaluation in a preclinical model. Front Bioeng. Biotechnol. [Internet]. 2020 Mar 25;8. https://www.frontiersin.org/article/10.3389/fbioe.2020.00217/full (2020).
Kilian, D. et al. 3D printing of patient-specific implants for osteochondral defects: workflow for an MRI-guided zonal design. Biodes Manuf. [Internet] 4, 818–832, (2021).
doi: 10.1007/s42242-021-00153-4
Sharma, N. et al. Quantitative assessment of point-of-care 3D-printed patient-specific polyetheretherketone (PEEK) cranial implants. Int. J. Mol. Sci. [Internet]. 2021 Aug 7;22. http://www.ncbi.nlm.nih.gov/pubmed/34445228 (2021).
Gelețu, G. et al. Customized 3D-printed titanium mesh developed for an aesthetic zone to regenerate a complex bone defect resulting after a deficient odontectomy: a case report. Medicina (B Aires) [Internet] 58, 1192 (2022).
Gubin, A. V. et al. Challenges and perspectives in the use of additive technologies for making customized implants for traumatology and orthopedics. Biomed. Eng. (NY) 50, 285–289 (2016).
doi: 10.1007/s10527-016-9639-6
Charbonnier, B., Hadida, M. & Marchat, D. Additive manufacturing pertaining to bone: hopes, reality and future challenges for clinical applications. Acta Biomater. 121, 1–28 (2021).
pubmed: 33271354 doi: 10.1016/j.actbio.2020.11.039
Ivanovski, S. et al. 3D printing for bone regeneration: challenges and opportunities for achieving predictability. Periodontol 2000 93, 358–384 (2023).
pubmed: 37823472 doi: 10.1111/prd.12525
Center for Devices and Radiological Health. Technical Considerations for Additive Manufactured Medical Devices, U.S. Food and Drug Administration. [Internet]. 2020 [cited 2024 Jul 21]. https://www.fda.gov/regulatory-information/search-fda-guidance-documents/technical-considerations-additive-manufactured-medical-devices .
Lee, S. et al. Emerging technology as a key enabler for modernizing pharmaceutical manufacturing. PDA J. Pharm. Sci. Technol. 71, 66–67 (2017).
pubmed: 28396563 doi: 10.5731/pdajpst.2017.001100
BG, P. K., Mehrotra, S., Marques, S. M., Kumar, L. & Verma, R. 3D printing in personalized medicines: a focus on applications of the technology. Mater. Today Commun. 35, 105875 (2023).
doi: 10.1016/j.mtcomm.2023.105875
Al-Litani, K., Ali, T., Robles Martinez, P. & Buanz, A. 3D printed implantable drug delivery devices for women’s health: Formulation challenges and regulatory perspective. Adv. Drug Deliv. Rev. 198, 114859 (2023).
pubmed: 37149039 doi: 10.1016/j.addr.2023.114859
Shah, S. R., et al. A composite critical-size rabbit mandibular defect for evaluation of craniofacial tissue regeneration. Nat. Protoc. [Internet] 11, 1989–2009 (2016).
Ma, H., Feng, C., Chang, J. & Wu, C. 3D-printed bioceramic scaffolds: from bone tissue engineering to tumor therapy. Acta Biomater. [Internet] 79, 37–59, (2018).
pubmed: 30165201 doi: 10.1016/j.actbio.2018.08.026
Bruyas, A. et al. Systematic characterization of 3D-printed PCL/β-TCP scaffolds for biomedical devices and bone tissue engineering: Influence of composition and porosity. J. Mater. Res [Internet] 33, 1948–1959 (2018).
pubmed: 30364693 doi: 10.1557/jmr.2018.112
Francisco, I. et al. Three-dimensional impression of biomaterials for alveolar graft: scoping review. J. Funct. Biomater. [Internet] 14, 76 (2023).
pubmed: 36826875 doi: 10.3390/jfb14020076
Tang, Z., Li, X., Tan, Y., Fan, H. & Zhang, X. The material and biological characteristics of osteoinductive calcium phosphate ceramics. Regen. Biomater. [Internet] 5, 43–59, (2018).
pubmed: 29423267 doi: 10.1093/rb/rbx024
Dang, W. et al. A bifunctional scaffold with CuFeSe2 nanocrystals for tumor therapy and bone reconstruction. Biomaterials [Internet] 160, 92–106, (2018).
pubmed: 29407343 doi: 10.1016/j.biomaterials.2017.11.020
Zhang, W. et al. 3D-printed scaffolds with synergistic effect of hollow-pipe structure and bioactive ions for vascularized bone regeneration. Biomaterials [Internet] 135, 85–95 (2017).
pubmed: 28499127 doi: 10.1016/j.biomaterials.2017.05.005
Ye, J. et al. The interaction between intracellular energy metabolism and signaling pathways during osteogenesis. Front. Mol. Biosci. 8, 807487 (2022).
pubmed: 35155568 doi: 10.3389/fmolb.2021.807487
Yuan, X. et al. Recent advances in 3D printing of smart scaffolds for bone tissue engineering and regeneration. Adv. Mater. 36, 2403641 (2024).
doi: 10.1002/adma.202403641
Yang, J., Ueharu, H. & Mishina, Y. Energy metabolism: a newly emerging target of BMP signaling in bone homeostasis. Bone 138, 115467 (2020).
pubmed: 32512164 pmcid: 7423769 doi: 10.1016/j.bone.2020.115467
Kang, Z. et al. Metabolic regulation by biomaterials in osteoblast. Front. Bioeng. Biotechnol. 11, 1184463 (2023).
pubmed: 37324445 pmcid: 10265685 doi: 10.3389/fbioe.2023.1184463
Rosenberg, N. The theoretical context of biophysical stimulation of osteoblasts. In: Biophysical Osteoblast Stimulation for Bone Grafting and Regeneration 3–12 (Springer International Publishing, 2023).
Na, J. et al. Extracellular matrix stiffness as an energy metabolism regulator drives osteogenic differentiation in mesenchymal stem cells. Bioact. Mater. 35, 549–563 (2024).
pubmed: 38434800
Rahimnejad, M., Rezvaninejad, R., Rezvaninejad, R. & França, R. Biomaterials in bone and mineralized tissue engineering using 3D printing and bioprinting technologies. Biomed. Phys. Eng. Express 7, 062001 (2021).
doi: 10.1088/2057-1976/ac21ab
Michigami, T., Kawai, M., Yamazaki, M. & Ozono, K. Phosphate as a signaling molecule and its sensing mechanism. Physiol. Rev. 98, 2317–2348 (2018).
pubmed: 30109818 doi: 10.1152/physrev.00022.2017
Islam, M. S. Calcium signaling: from basic to bedside. Adv. Exp. Med. Biol. 1131, 1–6 (2020).
pubmed: 31646504 doi: 10.1007/978-3-030-12457-1_1
Suzuki, O., Shiwaku, Y. & Hamai, R. Octacalcium phosphate bone substitute materials: Comparison between properties of biomaterials and other calcium phosphate materials. Dent. Mater. J. 39, 187–199 (2020).
pubmed: 32161239 doi: 10.4012/dmj.2020-001
Danoux, C. B. S. S. et al. Elucidating the individual effects of calcium and phosphate ions on hMSCs by using composite materials. Acta Biomater. 17, 1–15 (2015).
pubmed: 25676583 doi: 10.1016/j.actbio.2015.02.003
Barradas, A. M. C. et al. A calcium-induced signaling cascade leading to osteogenic differentiation of human bone marrow-derived mesenchymal stromal cells. Biomaterials 33, 3205–3215 (2012).
pubmed: 22285104 doi: 10.1016/j.biomaterials.2012.01.020
Tada, H., Nemoto, E., Foster, B. L., Somerman, M. J. & Shimauchi, H. Phosphate increases bone morphogenetic protein-2 expression through cAMP-dependent protein kinase and ERK1/2 pathways in human dental pulp cells. Bone 48, 1409–1416 (2011).
pubmed: 21419244 doi: 10.1016/j.bone.2011.03.675
Wang, X. et al. Calcium phosphate-based materials regulate osteoclast-mediated osseointegration. Bioact. Mater. 6, 4517–4530 (2021).
pubmed: 34632163 pmcid: 8484898
Si, J. et al. Osteopontin in bone metabolism and bone diseases. Med. Sci. Monit. 26, e919159 (2020).
pubmed: 31996665 pmcid: 7003659 doi: 10.12659/MSM.919159
Vermeulen, S. et al. An in vitro model system based on calcium- and phosphate ion-induced hMSC spheroid mineralization. Mater. Today Bio 23, 100844 (2023).
pubmed: 38033367 pmcid: 10682137 doi: 10.1016/j.mtbio.2023.100844
Xiao, D. et al. The role of calcium phosphate surface structure in osteogenesis and the mechanisms involved. Acta Biomater. 106, 22–33 (2020).
pubmed: 31926336 doi: 10.1016/j.actbio.2019.12.034
Guo, X. et al. The implication of the notch signaling pathway in biphasic calcium phosphate ceramic‐induced ectopic bone formation: a preliminary experiment. J. Biomed. Mater. Res A 108, 1035–1044 (2020).
pubmed: 31925903 doi: 10.1002/jbm.a.36878
Sugiatno, E., Herminajeng, E. & Sosroseno, W. The role of prostaglandin E2 on osteoblast proliferation induced by hydroxyapatite. J. Biosci. Med (Irvine) 08, 42–55 (2020).
Miroshnichenko, L. A., Polyakova, T. Y. U., Litvinova, L. S. & Khlusov, I. A. Review of local cellular and molecular processes of bone tissue regeneration induced by calcium phosphate materials. Cell Tissue Biol. 18, 148–162 (2024).
doi: 10.1134/S1990519X23700062
Zhu, M., Zhang, R., Mao, Z., Fang, J. & Ren, F. Topographical biointerface regulating cellular functions for bone tissue engineering. Biosurf. Biotribol. 8, 165–187 (2022).
doi: 10.1049/bsb2.12043
Kermani, F., Kargozar, S., Dorozhkin, S. V., Mollazadeh, S. Calcium phosphate bioceramics for improved angiogenesis. In: Biomaterials for Vasculogenesis and Angiogenesis 185–203 (Elsevier, 2022).
Kumar, A. et al. Synergistic effect of biphasic calcium phosphate and platelet-rich fibrin attenuate markers for inflammation and osteoclast differentiation by suppressing NF-κB/MAPK signaling pathway in chronic periodontitis. Molecules 26, 6578 (2021).
pubmed: 34770985 pmcid: 8587053 doi: 10.3390/molecules26216578
Spagnuolo, G. et al. An in-vitro study investigating the effect of air-abrasion bioactive glasses on dental adhesion, cytotoxicity and odontogenic gene expression. Dent. Mater. 37, 1734–1750 (2021).
pubmed: 34561100 doi: 10.1016/j.dental.2021.09.004
Hohenbild, F. et al. An in vitro evaluation of the biological and osteogenic properties of magnesium-doped bioactive glasses for application in bone tissue engineering. Int J. Mol. Sci. 22, 12703 (2021).
pubmed: 34884519 pmcid: 8657676 doi: 10.3390/ijms222312703
Turner, J. et al. The effect of Si species released from bioactive glasses on cell behaviour: a quantitative review. Acta Biomater. 170, 39–52 (2023).
pubmed: 37714247 doi: 10.1016/j.actbio.2023.09.012
Huang, D. et al. Strontium-substituted sub-micron bioactive glasses inhibit ostoclastogenesis through suppression of RANKL-induced signaling pathway. Regen. Biomater. 7, 303–311 (2020).
pubmed: 32523732 pmcid: 7266663 doi: 10.1093/rb/rbaa004
Zhang, C., Yuan, Y., Fang, L. & Xuan, Y. Promotion of osteogenesis by bioactive glass–ceramic coating: Possible involvement of the Hedgehog signaling pathway. J. Orthop. Sci. 24, 731–736 (2019).
pubmed: 30638689 doi: 10.1016/j.jos.2018.12.006
Williams, D. F. Biocompatibility pathways and mechanisms for bioactive materials: the bioactivity zone. Bioact. Mater. 10, 306–322 (2022).
pubmed: 34901548
Bogoyevitch, M. A., Ngoei, K. R. W., Zhao, T. T., Yeap, Y. Y. C. & Ng, D. C. H. c-Jun N-terminal kinase (JNK) signaling: recent advances and challenges. Biochim. Biophys. Acta (BBA) - Proteins Proteom. 1804, 463–475 (2010).
doi: 10.1016/j.bbapap.2009.11.002
Gong, W., Dong, Y., Wang, S., Gao, X. & Chen, X. A novel nano-sized bioactive glass stimulates osteogenesis via the MAPK pathway. RSC Adv. 7, 13760–13767 (2017).
doi: 10.1039/C6RA26713K
Li, J. et al. Ion release behavior of vanadium-doped mesoporous bioactive glass particles and the effect of the released ions on osteogenic differentiation of BMSCs via the FAK/MAPK signaling pathway. J. Mater. Chem. B 9, 7848–7865 (2021).
pubmed: 34586154 doi: 10.1039/D1TB01479J
Fellenberg, J. et al. Bioactive glass selectively promotes cytotoxicity towards giant cell tumor of bone derived neoplastic stromal cells and induces MAPK signalling dependent autophagy. Bioact. Mater. 15, 456–468 (2022).
pubmed: 35386334 pmcid: 8958388
Łukowicz, K. et al. The role of CaO/SiO2 ratio and P2O5 content in gel-derived bioactive glass-polymer composites in the modulation of their bioactivity and osteoinductivity in human BMSCs. Mater. Sci. Eng. C 109, 110535 (2020).
doi: 10.1016/j.msec.2019.110535
Zheng, K., Niu, W., Lei, B. & Boccaccini, A. R. Immunomodulatory bioactive glasses for tissue regeneration. Acta Biomater. 133, 168–186 (2021).
pubmed: 34418539 doi: 10.1016/j.actbio.2021.08.023
Khotib, J., Gani, M. A. & Budiatin, A. S. Lestari MLAD, Rahadiansyah E, Ardianto C. Signaling pathway and transcriptional regulation in osteoblasts during bone healing: direct involvement of hydroxyapatite as a biomaterial. Pharmaceuticals 14, 615 (2021).
pubmed: 34206843 pmcid: 8308723 doi: 10.3390/ph14070615
Liang, H. et al. Gold nanoparticles-loaded hydroxyapatite composites guide osteogenic differentiation of human mesenchymal stem cells through Wnt/β-catenin signaling pathway. Int. J. Nanomed. 14, 6151–6163 (2019).
doi: 10.2147/IJN.S213889
Kuntin, D., Gosling, N., Wood, D. & Genever, P. Wnt signalling in mesenchymal stem cells is heightened in response to plasma sprayed hydroxyapatite coatings. Osteoarthr. Cartil. 26, S146 (2018).
doi: 10.1016/j.joca.2018.02.315
Wang, J. et al. Nano-hydroxyapatite coating promotes porous calcium phosphate ceramic-induced osteogenesis via BMP/Smad signaling pathway. Int. J. Nanomed. 14, 7987–8000 (2019).
doi: 10.2147/IJN.S216182
Jean Gabriel Garcia-Diaz. WNT ligand-specific signaling in bone (John Hopkins University, 2023).
Baron, R. & Kneissel, M. WNT signaling in bone homeostasis and disease: from human mutations to treatments. Nat. Med 19, 179–192 (2013).
pubmed: 23389618 doi: 10.1038/nm.3074
Huang, K. et al. Wnt10b regulates osteogenesis of adipose-derived stem cells through Wnt/β-catenin signalling pathway in osteoporosis. Cell Prolif. 57, e13522 (2024).
pubmed: 37340715 doi: 10.1111/cpr.13522
Zhou, J., Zhao, L., Li, B. & Han, Y. Nanorod diameter modulated osteogenic activity of hierarchical micropore/nanorod-patterned coatings via a Wnt/β-catenin pathway. Nanomedicine 14, 1719–1731 (2018).
pubmed: 29665441 doi: 10.1016/j.nano.2018.04.006
Ha, S. W., Park, J., Habib, M. M. & Beck, G. R. Nano-hydroxyapatite stimulation of gene expression requires Fgf receptor, phosphate transporter, and Erk1/2 signaling. ACS Appl. Mater. Interfaces 9, 39185–39196 (2017).
pubmed: 29045789 pmcid: 10336561 doi: 10.1021/acsami.7b12029
Song, Y. et al. Zinc silicate/nano-hydroxyapatite/collagen scaffolds promote angiogenesis and bone regeneration via the p38 MAPK pathway in activated monocytes. ACS Appl. Mater. Interfaces 12, 16058–16075 (2020).
pubmed: 32182418 doi: 10.1021/acsami.0c00470
Xu, D. et al. Tailorable hierarchical structures of biomimetic hydroxyapatite micro/nano particles promoting endocytosis and osteogenic differentiation of stem cells. Biomater. Sci. 8, 3286–3300 (2020).
pubmed: 32490486 doi: 10.1039/D0BM00443J
Hiragami, F., Akiyama, J., Koike, Y. & Kano, Y. Enhancement of hydroxyapatite‐mediated three‐dimensional‐like proliferation of mouse fibroblasts by heat treatment: Effects of heat shock‐induced p38 MAPK pathway. J. Biomed. Mater. Res. A 74A, 705–711 (2005).
doi: 10.1002/jbm.a.30362
Yang, C. et al. Stimulation of osteogenesis and angiogenesis by micro/nano hierarchical hydroxyapatite via macrophage immunomodulation. Nanoscale 11, 17699–17708 (2019).
pubmed: 31545331 doi: 10.1039/C9NR05730G
Zhuang, Y. et al. Promoting vascularized bone regeneration via strontium-incorporated hydroxyapatite bioceramic. Mater. Des. 234, 112313 (2023).
doi: 10.1016/j.matdes.2023.112313
Mestres, G. et al. Inflammatory response to nano- and microstructured hydroxyapatite. PLoS One 10, e0120381 (2015).
pubmed: 25837264 pmcid: 4383585 doi: 10.1371/journal.pone.0120381
Sparks, D. S. et al. A preclinical large-animal model for the assessment of critical-size load-bearing bone defect reconstruction. Nat. Protoc. [Internet] 15, 877–924, (2020).
pubmed: 32060491 doi: 10.1038/s41596-019-0271-2
Lee, J. S. et al. Osteogenesis of 3D-Printed PCL/TCP/bdECM scaffold using adipose-derived stem cells aggregates; an experimental study in the canine mandible. Int. J. Mol. Sci. [Internet]. 22. http://www.ncbi.nlm.nih.gov/pubmed/34063742 (2021).
Kotagudda Ranganath, S., Schlund, M., Delattre, J., Ferri, J. & Chai, F. Bilateral double site (calvarial and mandibular) critical-size bone defect model in rabbits for evaluation of a craniofacial tissue engineering constructs. Mater. Today Bio 14, 100267 (2022).
pubmed: 35514436 pmcid: 9061786 doi: 10.1016/j.mtbio.2022.100267
Lopez, C. D. et al. Regeneration of a pediatric alveolar cleft model using three-dimensionally printed bioceramic scaffolds and osteogenic agents: comparison of dipyridamole and rhBMP-2. Plast. Reconstr. Surg. 144, 358–370 (2019).
pubmed: 31348344 pmcid: 6668366 doi: 10.1097/PRS.0000000000005840
Carrel, J., Wiskott, A., Scherrer, S. & Durual, S. Large bone vertical augmentation using a three‐dimensional printed TCP/HA bone graft: a pilot study in dog mandible. Clin. Implant Dent. Relat. Res. [Internet] 18, 1183–1192, (2016).
pubmed: 26899497 doi: 10.1111/cid.12394
Shen, C. et al. Three-dimensional printing for craniofacial bone tissue engineering. Tissue Eng. A [Internet] 26, 1303–1311, https://www.liebertpub.com/doi/10.1089/ten.tea.2020.0186 (2020).
Raymond, Y. et al. 3D printing with star-shaped strands: a new approach to enhance in vivo bone regeneration. Biomater. Adv. [Internet] 137, 212807 (2022).
pubmed: 35929234 doi: 10.1016/j.bioadv.2022.212807
Zhang, J. et al. Biodegradable metals for bone defect repair: a systematic review and meta-analysis based on animal studies. Bioact. Mater. 6, 4027–4052 (2021).
pubmed: 33997491 pmcid: 8089787
Simunovic, F. & Finkenzeller, G. Vascularization strategies in bone tissue engineering. Cells 10, 1749 (2021).
pubmed: 34359919 pmcid: 8306064 doi: 10.3390/cells10071749
Rahimnejad, M. et al. Engineered biomimetic membranes for organ-on-a-chip. ACS Biomater. Sci. Eng. 8, 5038–5059 (2022).
pubmed: 36347501 doi: 10.1021/acsbiomaterials.2c00531
Shiwarski, D. J., Hudson, A. R., Tashman, J. W. & Feinberg, A. W. Emergence of FRESH 3D printing as a platform for advanced tissue biofabrication. APL Bioeng. 5, 010904 (2021).
pubmed: 33644626 pmcid: 7889293 doi: 10.1063/5.0032777
Madadian, E. et al. In-foam bioprinting: an embedded bioprinting technique with self-removable support bath. Small Sci. 4, 2300280 (2024).
doi: 10.1002/smsc.202300280
Moeun, B. et al. Vascularizing a human-scale bioartificial pancreas using sacrificial embedded 3D printing into self-healing alginate. Transplantation 107, 60–60 (2023).
doi: 10.1097/01.tp.0000994068.03911.8e
Kolomenskaya, E., Butova, V., Poltavskiy, A., Soldatov, A. & Butakova, M. Application of artificial intelligence at all stages of bone tissue engineering. Biomedicines 12, 76 (2023).
pubmed: 38255183 pmcid: 10813365 doi: 10.3390/biomedicines12010076
Rahimnejad, M. et al. Stimuli-responsive biomaterials: smart avenue toward 4D bioprinting. Crit. Rev. Biotechnol. 44, 860–891 (2024).
pubmed: 37442771 doi: 10.1080/07388551.2023.2213398
Golafshan, N. et al. Tough magnesium phosphate-based 3D-printed implants induce bone regeneration in an equine defect model. Biomaterials [Internet] 261, 120302 (2020).
pubmed: 32932172 doi: 10.1016/j.biomaterials.2020.120302
Zhang, W. et al. 3D printed composite scaffolds with dual small molecule delivery for mandibular bone regeneration. Biofabrication [Internet] 12, 035020 (2020).
pubmed: 32369796 doi: 10.1088/1758-5090/ab906e
Martínez-Vázquez, F. J., Cabañas, M. V., Paris, J. L., Lozano, D. & Vallet-Regí, M. Fabrication of novel Si-doped hydroxyapatite/gelatine scaffolds by rapid prototyping for drug delivery and bone regeneration. Acta Biomater. [Internet] 15, 200–209 (2015).
pubmed: 25560614 doi: 10.1016/j.actbio.2014.12.021
Arbex, L. et al. Physio-mechanical and biological effects due to surface area modifications of 3D printed β-tri- calcium phosphate: an in vitro study. Annals of 3D printed. Medicine 8, 100078 (2022).
Wang, J. et al. Fabrication and biological evaluation of 3D-printed calcium phosphate ceramic scaffolds with distinct macroporous geometries through digital light processing technology. Regen. Biomater. 9, rbac005 (2022).
pubmed: 35668922 pmcid: 9160879 doi: 10.1093/rb/rbac005

Auteurs

Ana Beatriz G de Carvalho (ABG)

Department of Cariology, Restorative Sciences and Endodontics, School of Dentistry, University of Michigan, Ann Arbor, MI, USA.
Department of Dental Materials and Prosthodontics, São Paulo State University, São José dos Campos, SP, Brazil.

Maedeh Rahimnejad (M)

Department of Cariology, Restorative Sciences and Endodontics, School of Dentistry, University of Michigan, Ann Arbor, MI, USA.

Rodrigo L M S Oliveira (RLMS)

Federal University of São Paulo, Institute of Science and Technology, São José dos Campos, SP, Brazil.

Prabaha Sikder (P)

Department of Mechanical Engineering, Cleveland State University, Cleveland, OH, USA.

Guilherme S F A Saavedra (GSFA)

Department of Dental Materials and Prosthodontics, São Paulo State University, São José dos Campos, SP, Brazil.

Sarit B Bhaduri (SB)

Department of Mechanical, Industrial and Manufacturing Engineering, University of Toledo, Toledo, OH, USA.

Debby Gawlitta (D)

Department of Oral and Maxillofacial Surgery & Special Dental Care, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands.
Regenerative Medicine Center Utrecht, Utrecht, The Netherlands.

Jos Malda (J)

Department of Oral and Maxillofacial Surgery & Special Dental Care, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands.
Regenerative Medicine Center Utrecht, Utrecht, The Netherlands.
Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands.
Department of Orthopedics, University Medical Center Utrecht, Utrecht, The Netherlands.

Darnell Kaigler (D)

Department of Periodontics and Oral Medicine, School of Dentistry, University of Michigan, Ann Arbor, MI, USA.
Department of Biomedical Engineering, College of Engineering, University of Michigan, Ann Arbor, MI, USA.

Eliandra S Trichês (ES)

Department of Cariology, Restorative Sciences and Endodontics, School of Dentistry, University of Michigan, Ann Arbor, MI, USA.
Federal University of São Paulo, Institute of Science and Technology, São José dos Campos, SP, Brazil.

Marco C Bottino (MC)

Department of Cariology, Restorative Sciences and Endodontics, School of Dentistry, University of Michigan, Ann Arbor, MI, USA. mbottino@umich.edu.
Department of Biomedical Engineering, College of Engineering, University of Michigan, Ann Arbor, MI, USA. mbottino@umich.edu.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH