Sports Economic Operation Index Prediction Model Based on Deep Learning and Ensemble Learning.


Journal

Computational intelligence and neuroscience
ISSN: 1687-5273
Titre abrégé: Comput Intell Neurosci
Pays: United States
ID NLM: 101279357

Informations de publication

Date de publication:
2022
Historique:
received: 13 01 2022
revised: 09 02 2022
accepted: 21 02 2022
entrez: 7 4 2022
pubmed: 8 4 2022
medline: 9 4 2022
Statut: epublish

Résumé

In order to construct a prediction model of sports economic operation indicators, this paper combines deep learning and ensemble learning algorithms to integrate and improve the algorithms and analyzes the principles of the LightGBM ensemble learning model and the hyperparameters of the model. Moreover, this paper obtains appropriate intelligent algorithms according to the data analysis requirements of sports economic operation. The break-even analysis method of sports event operation is to find the critical point of the program's profit and loss by analyzing the relationship between the operating cost and profit of the sports event. In addition, this paper uses deep learning and ensemble learning to comprehensively evaluate sports events, constructs a summary evaluation structure of sports items, and evaluates the model in this paper combined with experimental research. The test results verify the reliability of the model in this paper.

Identifiants

pubmed: 35387248
doi: 10.1155/2022/9085349
pmc: PMC8979742
doi:

Types de publication

Journal Article Retracted Publication

Langues

eng

Sous-ensembles de citation

IM

Pagination

9085349

Commentaires et corrections

Type : RetractionIn

Informations de copyright

Copyright © 2022 Chuangjian Yang and Junmeng Chen.

Déclaration de conflit d'intérêts

The authors declare no competing interests.

Références

J Comput Chem. 2013 Mar 5;34(6):460-5
pubmed: 23115109
Phys Chem Chem Phys. 2015 Dec 21;17(47):31558-65
pubmed: 26176200
Curr Opin Neurobiol. 2017 Apr;43:139-148
pubmed: 28390863
Waste Manag. 2019 Feb 1;84:129-140
pubmed: 30691884

Auteurs

Chuangjian Yang (C)

School of Physical Education and Health, East China Jiaotong University, Nanchang 330013, China.

Junmeng Chen (J)

Sangmyung University, Seoul 03016, Republic of Korea.

Articles similaires

Selecting optimal software code descriptors-The case of Java.

Yegor Bugayenko, Zamira Kholmatova, Artem Kruglov et al.
1.00
Software Algorithms Programming Languages
Databases, Protein Protein Domains Protein Folding Proteins Deep Learning
Humans Middle Aged Female Male Surveys and Questionnaires

Classifications MeSH