Philadelphia chromosome-negative myeloproliferative neoplasms: clinical aspects and treatment options.
Calreticulin
/ genetics
Humans
Janus Kinase 2
/ genetics
Janus Kinase Inhibitors
/ therapeutic use
Mutation
Myeloproliferative Disorders
/ drug therapy
Philadelphia Chromosome
Polycythemia Vera
/ drug therapy
Primary Myelofibrosis
/ genetics
Receptors, Thrombopoietin
/ genetics
Thrombocythemia, Essential
/ genetics
Hematopoietic stem cell transplantation
Interferon-α
JAK inhibitor
Myeloproliferative neoplasms
Journal
International journal of hematology
ISSN: 1865-3774
Titre abrégé: Int J Hematol
Pays: Japan
ID NLM: 9111627
Informations de publication
Date de publication:
May 2022
May 2022
Historique:
received:
29
03
2022
accepted:
30
03
2022
revised:
30
03
2022
pubmed:
11
4
2022
medline:
30
4
2022
entrez:
10
4
2022
Statut:
ppublish
Résumé
Clinical studies of Philadelphia chromosome-negative myeloproliferative neoplasms (MPN) have progressed greatly with the discovery of mutations in three driver genes: JAK2, MPL, and calreticulin. Other genes that may play important roles in pathogenesis and progression of MPN have also been identified. Several prognostic prediction systems based on various risk factors including these genetic factors have been developed and utilized in clinical practice. All mutations of the three driver genes result in JAK2 activation, and JAK inhibitors have indeed improved clinical outcomes for primary myelofibrosis and polycythemia vera. However, they have minimal ability to inhibit clonogenic growth, far below that of ABL tyrosine kinase inhibitors in chronic myeloid leukemia. Therefore, hematopoietic stem cell transplantation (HSCT), which still has a high mortality rate, remains the only curative treatment for MPN. Efforts are being made to advance the treatment of MPN by refining HSCT methods, combining JAK inhibitors with other molecularly targeted agents, and reviewing the safety and clonogenic inhibitory effects of interferon-alfa.
Identifiants
pubmed: 35397744
doi: 10.1007/s12185-022-03344-6
pii: 10.1007/s12185-022-03344-6
doi:
Substances chimiques
Calreticulin
0
Janus Kinase Inhibitors
0
Receptors, Thrombopoietin
0
Janus Kinase 2
EC 2.7.10.2
Types de publication
Journal Article
Review
Langues
eng
Sous-ensembles de citation
IM
Pagination
616-618Informations de copyright
© 2022. Japanese Society of Hematology.
Références
Dameshek W. Some speculation on the myeloproliferative syndromes. Blood. 1951;6:372–5.
doi: 10.1182/blood.V6.4.372.372
Arber DA, Orazi A, Hasserjian R, et al. The 2016 revision to the World Health Organization classification of myeloid neoplasms and acute leukemia. Blood. 2016;127:2391–405.
doi: 10.1182/blood-2016-03-643544
Hultcrantz M, Kristinsson SY, Andersson TM, et al. Patterns of survival among patients with myeloproliferative neoplasms diagnosed in Sweden from 1973 to 2008: a population-based study. J Clin Oncol. 2012;30:2995–3001.
doi: 10.1200/JCO.2012.42.1925
Takenaka K, Shimoda K, Uchida N, et al. Clinical features and outcomes of patients with primary myelofibrosis in Japan: report of a 17-year nationwide survey by the Idiopathic Disorders of Hematopoietic Organs Research Committee of Japan. Int J Hematol. 2017;105:59–69.
doi: 10.1007/s12185-016-2102-3
Barbui T, Thiele J, Gisslinger H, et al. The 2016 WHO classification and diagnostic criteria for myeloproliferative neoplasms: document summary and in-depth discussion. Blood Cancer J. 2018;8:15.5.
Tefferi A, Barbui T. Polycythemia vera and essential thrombocythemia: 2021 update on diagnosis, risk-stratification and management. Am J Hematol. 2020;95:1599–613.
doi: 10.1002/ajh.26008
Tefferi A. Primary myelofibrosis: 2021 update on diagnosis, risk-stratification and management. Am J Hematol. 2021;96:145–62.
doi: 10.1002/ajh.26050
Harrison C, Kiladjian JJ, Al-Ali HK, et al. JAK inhibition with ruxolitinib versus best available therapy for myelofibrosis. N Engl J Med. 2012;366:787–98.
doi: 10.1056/NEJMoa1110556
Harrison CN, Vannucchi AM, Kiladjian JJ, et al. Long-term findings from COMFORT-II, a phase 3 study of ruxolitinib vs best available therapy for myelofibrosis. Leukemia. 2016;30:1701–7.
doi: 10.1038/leu.2016.148
Vannucchi AM, Kiladjian JJ, Griesshammer M, et al. Ruxolitinib versus standard therapy for the treatment of polycythemia vera. N Engl J Med. 2015;372:426–35.
doi: 10.1056/NEJMoa1409002
Deininger M, Radich J, Burn TC, et al. The effect of long-term ruxolitinib treatment on JAK2p.V617F allele burden in patients with myelofibrosis. Blood. 2015;126:1551–4.
doi: 10.1182/blood-2015-03-635235
Vainchenker W, Kralovics R. Genetic basis and molecular pathophysiology of classical myeloproliferative neoplasms. Blood. 2017;9(129):667–79.
doi: 10.1182/blood-2016-10-695940
Araki M, Yang Y, Masubuchi N, et al. Activation of the thrombopoietin receptor by mutant calreticulin in CALR-mutant myeloproliferative neoplasms. Blood. 2016;127:1307–16.
doi: 10.1182/blood-2015-09-671172
Robinson SE, Harrison CN. How we manage Philadelphia-negative myeloproliferative neoplasms in pregnancy. Br J Haematol. 2020;189:625–34.
doi: 10.1111/bjh.16453
Edahiro Y, Yasuda H, Gotoh A, et al. Interferon therapy for pregnant patients with essential thrombocythemia in Japan. Int J Hematol. 2021;113:106–11.
doi: 10.1007/s12185-020-03001-w