Assessment of the Impact of the Application of a Quercetin-Copper Complex on the Course of Physiological and Biochemical Processes in Wheat Plants (

Cu(II)–quercetin complex antioxidant enzymes chlorophyll content chlorophyll fluorescence gas exchange quercetin derivative reactive oxygen species salt stress wheat

Journal

Cells
ISSN: 2073-4409
Titre abrégé: Cells
Pays: Switzerland
ID NLM: 101600052

Informations de publication

Date de publication:
28 03 2022
Historique:
received: 20 02 2022
revised: 25 03 2022
accepted: 26 03 2022
entrez: 12 4 2022
pubmed: 13 4 2022
medline: 14 4 2022
Statut: epublish

Résumé

Salt stress is one of the main stressors limiting plant growth and yield. As a result of salt stress, unfavorable changes in the photosynthesis process take place, leading to a decrease in plant productivity. Therefore, it is necessary to use biologically active substances that reduce the effects of this stress. An example of such a substance is quercetin, classified as a flavonoid, which plays an important role in alleviating the effects of salt stress, mainly by the inactivation of reactive oxygen species (ROS) and by improvement of the photosynthesis process. A study was made of the effect of the quercetin-copper complex (Q-Cu (II)), which has a stronger antioxidant effect than pure quercetin. By means of a pot experiment, the influence of solutions of the Q-Cu (II) complex (100 mg∙L

Identifiants

pubmed: 35406704
pii: cells11071141
doi: 10.3390/cells11071141
pmc: PMC8997712
pii:
doi:

Substances chimiques

Antioxidants 0
Reactive Oxygen Species 0
Chlorophyll 1406-65-1
Copper 789U1901C5
Quercetin 9IKM0I5T1E

Types de publication

Journal Article Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Références

J Plant Res. 2017 Nov;130(6):1079-1093
pubmed: 28711996
Molecules. 2014 Oct 10;19(10):16240-65
pubmed: 25310150
Phytochemistry. 2010 Apr;71(5-6):605-13
pubmed: 20096428
Food Chem. 2019 Jan 15;271:165-173
pubmed: 30236662
Int J Mol Sci. 2021 Jul 09;22(14):
pubmed: 34299004
Biochim Biophys Acta. 2007 Jun;1767(6):414-21
pubmed: 17207454
BMC Plant Biol. 2015 Jul 07;15:170
pubmed: 26149720
Front Plant Sci. 2018 Jul 20;9:1042
pubmed: 30079075
Crit Rev Food Sci Nutr. 1994;34(5-6):473-97
pubmed: 7811379
Plants (Basel). 2019 Dec 04;8(12):
pubmed: 31817132
Plants (Basel). 2019 Jul 25;8(8):
pubmed: 31349715
J Plant Physiol. 2015 Jul 20;184:98-105
pubmed: 26282614
Environ Sci Pollut Res Int. 2015 Mar;22(6):4056-75
pubmed: 25398215
Plant Physiol Biochem. 2021 Sep;166:10-19
pubmed: 34087741
Biotechnol Adv. 2014 Jan-Feb;32(1):40-52
pubmed: 24091291
J Exp Bot. 2009;60(6):1537-53
pubmed: 19386614
Int J Genomics. 2014;2014:701596
pubmed: 24804192
Plant Physiol Biochem. 2010 Jan;48(1):16-20
pubmed: 19932973
Food Chem. 2019 Nov 15;298:125093
pubmed: 31260960
Anal Biochem. 2018 Feb 1;542:29-33
pubmed: 29175424
Plant Sci. 2015 Feb;231:159-72
pubmed: 25576001
Ultrason Sonochem. 2021 Oct;78:105686
pubmed: 34358980
Int J Mol Sci. 2021 Jun 26;22(13):
pubmed: 34206953
J Plant Physiol. 2011 Feb 15;168(3):204-12
pubmed: 20850892
Plant Physiol Biochem. 2020 Nov;156:64-77
pubmed: 32906023
Spectrochim Acta A Mol Biomol Spectrosc. 2009 Jan;71(5):1901-6
pubmed: 18783981
Ann Bot. 2009 Feb;103(4):551-60
pubmed: 18662937
Food Energy Secur. 2015 Oct;4(3):178-202
pubmed: 27610232
Antioxidants (Basel). 2019 Sep 09;8(9):
pubmed: 31505852
Food Chem. 2016 Apr 15;197(Pt A):737-46
pubmed: 26617011
Annu Rev Plant Biol. 2008;59:651-81
pubmed: 18444910
Front Plant Sci. 2020 Jun 03;11:682
pubmed: 32582241
J Exp Bot. 2011 May;62(8):2939-47
pubmed: 21357768
Front Plant Sci. 2021 Mar 25;12:646221
pubmed: 33841475
J Exp Bot. 2000 Apr;51(345):659-68
pubmed: 10938857
J Exp Bot. 2004 Aug;55(403):1607-21
pubmed: 15258166
Ann Bot. 2009 Oct;104(5):853-61
pubmed: 19633310
Front Plant Sci. 2019 Feb 15;10:80
pubmed: 30828339
Front Plant Sci. 2016 Aug 30;7:1279
pubmed: 27625661
Biometals. 2011 Feb;24(1):41-9
pubmed: 20835752
J Exp Bot. 2014 Aug;65(16):4577-88
pubmed: 24821949
Annu Rev Plant Physiol Plant Mol Biol. 1998 Jun;49:249-279
pubmed: 15012235
Chemosphere. 2020 Nov;259:127436
pubmed: 32599387
Plant Physiol Biochem. 2019 Apr;137:144-153
pubmed: 30784986
BMC Plant Biol. 2019 Sep 13;19(1):403
pubmed: 31519149
Plant Cell Rep. 2019 Mar;38(3):403-416
pubmed: 30684024

Auteurs

Marta Jańczak-Pieniążek (M)

Department of Crop Production, University of Rzeszow, Zelwerowicza 4, 35-601 Rzeszow, Poland.

Dagmara Migut (D)

Department of Crop Production, University of Rzeszow, Zelwerowicza 4, 35-601 Rzeszow, Poland.

Tomasz Piechowiak (T)

Department of Food Chemistry and Toxicology, University of Rzeszow, Ćwiklińskiej 1A, 35-601 Rzeszów, Poland.

Maciej Balawejder (M)

Department of Food Chemistry and Toxicology, University of Rzeszow, Ćwiklińskiej 1A, 35-601 Rzeszów, Poland.

Articles similaires

Photosynthesis Ribulose-Bisphosphate Carboxylase Carbon Dioxide Molecular Dynamics Simulation Cyanobacteria
Semiconductors Photosynthesis Polymers Carbon Dioxide Bacteria
Fragaria Light Plant Leaves Osmosis Stress, Physiological
Biofilms Candida albicans Quorum Sensing Candida glabrata Menthol

Classifications MeSH