Identifying QTLs for Grain Size in a Colossal Grain Rice (
BSA-seq
QTL
additive effects
grain size
rice
splicing
Journal
International journal of molecular sciences
ISSN: 1422-0067
Titre abrégé: Int J Mol Sci
Pays: Switzerland
ID NLM: 101092791
Informations de publication
Date de publication:
24 Mar 2022
24 Mar 2022
Historique:
received:
04
03
2022
revised:
21
03
2022
accepted:
21
03
2022
entrez:
12
4
2022
pubmed:
13
4
2022
medline:
14
4
2022
Statut:
epublish
Résumé
Grain size is an important component of quality and harvest traits in the field of rice breeding. Although numerous quantitative trait loci (QTLs) of grain size in rice have been reported, the molecular mechanisms of these QTLs remain poorly understood, and further research on QTL observation and candidate gene identification is warranted. In our research, we developed a suite of F2 intercross populations from a cross of 9311 and CG. These primary populations were used to map QTLs conferring grain size, evaluated across three environments, and then subjected to bulked-segregant analysis-seq (BSA-seq). In total, 4, 11, 12 and 14 QTLs for grain length (GL), grain width (GW), 1000-grain weight (TGW), and length/width ratio (LWR), respectively, were detected on the basis of a single-environment analysis. In particular, over 200 splicing-related sites were identified by whole-genome sequencing, including one splicing-site mutation with G>A at the beginning of intron 4 on Os03g0841800 (qGL3.3), producing a smaller open reading frame, without the third and fourth exons. A previous study revealed that the loss-of-function allele caused by this splicing site can negatively regulate rice grain length. Furthermore, qTGW2.1 and qGW2.3 were new QTLs for grain width. We used the near-isogenic lines (NILs) of these GW QTLs to study their genetic effects on individuals and pyramiding, and found that they have additive effects on GW. In summary, these discoveries provide a valuable genetic resource, which will facilitate further study of the genetic polymorphism of new rice varieties in rice breeding.
Identifiants
pubmed: 35408887
pii: ijms23073526
doi: 10.3390/ijms23073526
pmc: PMC8998697
pii:
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Subventions
Organisme : National Natural Science Foundation of China
ID : 31971924
Organisme : National Natural Science Foundation of China
ID : 32171927
Organisme : Natural Science Foundation of Jiangsu Province
ID : SBK2020042924
Organisme : Platform Funding for Guangdong Provincial Enterprise Key Laboratory of Seed and Seedling Health Management Technology
ID : 2021B1212050011
Organisme : National Natural Science Foundation of China
ID : 32001452
Organisme : Program for Scientific Research Innovation Team of Young Scholar in Colleges and Universities of Shandong Province
ID : 2019KJE011
Organisme : Postgraduate Scientific Research Innovation Project of Hunan Province
ID : CX20190496
Organisme : National Natural Science Foundation of China
ID : U2106230
Organisme : Hong Kong Re-search Grant Council
ID : AoE/M-05/12, AoE/M-403/16,GRF14160516, 14177617, 12100318
Références
Bioinformatics. 2009 Jul 15;25(14):1754-60
pubmed: 19451168
Nat Biotechnol. 2012 Jan 22;30(2):174-8
pubmed: 22267009
Plant Cell. 2000 Sep;12(9):1591-606
pubmed: 11006334
Biol Direct. 2012 Jul 02;7:20
pubmed: 22747664
Plant J. 2020 Jul;103(1):357-378
pubmed: 32133712
Cell Res. 2008 Dec;18(12):1199-209
pubmed: 19015668
Annu Rev Genet. 2014;48:99-118
pubmed: 25149369
Front Plant Sci. 2019 Oct 03;10:1160
pubmed: 31632417
Theor Appl Genet. 2006 Apr;112(6):1164-71
pubmed: 16453132
Mol Plant. 2018 May 7;11(5):754-756
pubmed: 29567448
Proc Natl Acad Sci U S A. 2012 Dec 26;109(52):21534-9
pubmed: 23236132
Plant Mol Biol. 2012 Feb;78(3):275-88
pubmed: 22130861
Nat Genet. 2011 Oct 23;43(12):1266-9
pubmed: 22019783
Plant Physiol. 2019 May;180(1):381-391
pubmed: 30796160
Trends Biotechnol. 2021 May;39(5):433-437
pubmed: 33036785
Mol Plant. 2015 Oct 5;8(10):1455-65
pubmed: 26187814
Plant Biotechnol J. 2021 Feb;19(2):227-229
pubmed: 33010087
Plant J. 2017 Sep;91(5):849-860
pubmed: 28621888
Int J Mol Sci. 2017 Feb 20;18(2):
pubmed: 28230724
Nat Genet. 2007 May;39(5):623-30
pubmed: 17417637
PLoS One. 2013 Jul 30;8(7):e68433
pubmed: 23935868
Pak J Biol Sci. 2007 Aug 1;10(15):2500-4
pubmed: 19070122
Genome Res. 2010 Sep;20(9):1297-303
pubmed: 20644199
Trends Plant Sci. 2006 Jul;11(7):344-50
pubmed: 16769240
Plant Physiol. 2016 Mar;170(3):1271-83
pubmed: 26754668
Plant Biotechnol J. 2016 Nov;14(11):2134-2146
pubmed: 27107174
Plant J. 2013 Apr;74(1):174-83
pubmed: 23289725
Front Plant Sci. 2018 Jun 07;9:692
pubmed: 29930561
Rice (N Y). 2012 Feb 27;5(1):4
pubmed: 24764504
Tree Physiol. 2020 Oct 29;40(11):1475-1486
pubmed: 32589747
Mol Genet Genomics. 2010 Feb;283(2):185-96
pubmed: 20049613
Proc Natl Acad Sci U S A. 2010 Nov 9;107(45):19579-84
pubmed: 20974950
Plant J. 2014 Feb;77(4):547-57
pubmed: 24320692
Nat Genet. 2015 Aug;47(8):944-8
pubmed: 26147619
BMC Plant Biol. 2021 Nov 4;21(1):514
pubmed: 34736393
Nat Biotechnol. 2015 May;33(5):445-9
pubmed: 25798936
Genome Res. 2010 Sep;20(9):1238-49
pubmed: 20627892
Trends Plant Sci. 2013 Apr;18(4):218-26
pubmed: 23218902
Plant Physiol. 2012 Mar;158(3):1208-19
pubmed: 22209874
Theor Appl Genet. 2018 Jul;131(7):1497-1508
pubmed: 29675645
Theor Appl Genet. 2016 Aug;129(8):1465-77
pubmed: 27154588
Curr Opin Plant Biol. 2016 Oct;33:23-32
pubmed: 27294659
Annu Rev Plant Biol. 2010;61:421-42
pubmed: 20192739
NPJ Sci Food. 2018 Aug 6;2:14
pubmed: 31304264
Proc Natl Acad Sci U S A. 1991 Nov 1;88(21):9828-32
pubmed: 1682921
J Hered. 2002 Jan-Feb;93(1):77-8
pubmed: 12011185
Plant Biol (Stuttg). 2015 Mar;17(2):419-29
pubmed: 25255693
Nucleic Acids Res. 1980 Oct 10;8(19):4321-5
pubmed: 7433111
Mol Plant. 2018 Jun 4;11(6):860-873
pubmed: 29702261
Ecotoxicol Environ Saf. 2021 Sep 1;220:112410
pubmed: 34126303
Nat Genet. 2016 Apr;48(4):447-56
pubmed: 26950093