Investigating the disordered regions (MoRFs, SLiMs and LCRs) and functions of mimicry proteins/peptides in silico.
Journal
PloS one
ISSN: 1932-6203
Titre abrégé: PLoS One
Pays: United States
ID NLM: 101285081
Informations de publication
Date de publication:
2022
2022
Historique:
received:
09
11
2021
accepted:
04
03
2022
entrez:
14
4
2022
pubmed:
15
4
2022
medline:
19
4
2022
Statut:
epublish
Résumé
Microbial mimicry of the host proteins/peptides can elicit host auto-reactive T- or B-cells resulting in autoimmune disease(s). Since intrinsically disordered protein regions (IDPRs) are involved in several host cell signaling and PPI networks, molecular mimicry of the IDPRs can help the pathogens in substituting their own proteins in the host cell-signaling and PPI networks and, ultimately hijacking the host cellular machinery. Thus, the present study was conducted to discern the structural disorder and intrinsically disordered protein regions (IDPRs) like, molecular recognition features (MoRFs), short linear motifs (SLiMs), and low complexity regions (LCRs) in the experimentally verified mimicry proteins and peptides (mimitopes) of bacteria, viruses and host. Also, functional characteristics of the mimicry proteins were studied in silico. Our results indicated that 78% of the bacterial host mimicry proteins and 45% of the bacterial host mimitopes were moderately/highly disordered while, 73% of the viral host mimicry proteins and 31% of the viral host mimitopes were moderately/highly disordered. Among the pathogens, 27% of the bacterial mimicry proteins and 13% of the bacterial mimitopes were moderately/highly disordered while, 53% of the viral mimicry proteins and 21% of the viral mimitopes were moderately/highly disordered. Though IDPR were frequent in host, bacterial and viral mimicry proteins, only a few mimitopes overlapped with the IDPRs like, MoRFs, SLiMs and LCRs. This suggests that most of the microbes cannot use molecular mimicry to modulate the host PPIs and hijack the host cell machinery. Functional analyses indicated that most of the pathogens exhibited mimicry with the host proteins involved in ion binding and signaling pathways. This is the first report on the disordered regions and functional aspects of experimentally proven host and microbial mimicry proteins.
Identifiants
pubmed: 35421114
doi: 10.1371/journal.pone.0265657
pii: PONE-D-21-35652
pmc: PMC9009644
doi:
Substances chimiques
Intrinsically Disordered Proteins
0
Peptides
0
Viral Proteins
0
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
e0265657Déclaration de conflit d'intérêts
The authors have declared that no competing interests exist.
Références
Structure. 2019 Jun 4;27(6):883-885
pubmed: 31167123
J Biol Chem. 2017 Jan 13;292(2):512-527
pubmed: 27881680
Ann Neurol. 2007 Jun;61(6):504-13
pubmed: 17492755
Mol Biosyst. 2012 Jan;8(1):268-81
pubmed: 21909575
Mol Biosyst. 2017 Aug 22;13(9):1770-1780
pubmed: 28692085
Bioinformatics. 2005 Aug 15;21(16):3433-4
pubmed: 15955779
Front Microbiol. 2017 Oct 23;8:2053
pubmed: 29109711
Nat Chem Biol. 2013 Sep;9(9):540-7
pubmed: 23851574
Bioinformatics. 2015 Apr 1;31(7):1025-33
pubmed: 25417202
Bioinformatics. 2015 Mar 15;31(6):857-63
pubmed: 25391399
Bioinformatics. 2009 Oct 15;25(20):2745-6
pubmed: 19717576
Trends Biochem Sci. 2020 Jun;45(6):526-544
pubmed: 32413327
BMC Syst Biol. 2010 Apr 13;4:43
pubmed: 20385029
Mol Biosyst. 2016 Mar;12(3):697-710
pubmed: 26651072
Mol Cell. 2016 Aug 18;63(4):579-592
pubmed: 27540857
J Biomol Struct Dyn. 2012;30(2):137-49
pubmed: 22702725
Biochim Biophys Acta. 2010 Apr;1804(4):996-1010
pubmed: 20100603
Protein Sci. 2015 Feb;24(2):221-35
pubmed: 25424537
Nat Genet. 2000 May;25(1):25-9
pubmed: 10802651
PLoS Genet. 2009 Mar;5(3):e1000397
pubmed: 19266028
Protein Sci. 2019 Nov;28(11):1952-1965
pubmed: 31441158
Int J Mol Sci. 2020 Aug 16;21(16):
pubmed: 32824294
Essays Biochem. 2017 May 9;61(2):211-223
pubmed: 28487398
Trends Microbiol. 2001 Aug;9(8):377-81
pubmed: 11514220
J Exp Med. 2018 Jul 2;215(7):1777-1787
pubmed: 29934321
Clin Rev Allergy Immunol. 2012 Feb;42(1):102-11
pubmed: 22095454
Curr Opin Struct Biol. 2002 Feb;12(1):54-60
pubmed: 11839490
PLoS One. 2013 Sep 03;8(9):e72838
pubmed: 24019881
Nucleic Acids Res. 2020 Jul 27;48(13):7584-7594
pubmed: 32544231
Mol Endocrinol. 2014 May;28(5):768-77
pubmed: 24678734
Virology. 2015 Aug;482:202-7
pubmed: 25880111
Mol Plant Microbe Interact. 2020 Jul;33(7):921-931
pubmed: 32212906
Curr Opin Struct Biol. 2009 Feb;19(1):31-8
pubmed: 19157855
Nucleic Acids Res. 2014 Jan;42(Database issue):D259-66
pubmed: 24214962
Mol Cell. 2004 Feb 13;13(3):367-76
pubmed: 14967144
Chem Rev. 2014 Jul 9;114(13):6880-911
pubmed: 24823319
ACS Omega. 2019 May 14;4(5):8495-8505
pubmed: 31459939
Genome Res. 2015 Jul;25(7):995-1007
pubmed: 25934563
Nucleic Acids Res. 2016 Jul 08;44(W1):W488-93
pubmed: 27174932
Mol Biol Evol. 2019 May 1;36(5):908-918
pubmed: 30668817
Front Biosci. 2008 May 01;13:6580-603
pubmed: 18508681
Biochem J. 2013 Sep 15;454(3):361-9
pubmed: 23988124
Trends Biochem Sci. 2011 Mar;36(3):159-69
pubmed: 21146412
Adv Virus Res. 2019;104:97-122
pubmed: 31439154
J Mol Biol. 2006 Oct 6;362(5):1043-59
pubmed: 16935303
J Biol Chem. 1998 Sep 4;273(36):22873-6
pubmed: 9722505
Mol Biosyst. 2015 Feb;11(2):585-94
pubmed: 25468592
Drug Discov Today. 2019 Jan;24(1):217-227
pubmed: 30278223
Results Probl Cell Differ. 2010;51:21-42
pubmed: 19130026