Hydroporphyrin-Doped Near-Infrared-Emitting Polymer Dots for Cellular Fluorescence Imaging.
dye-doping
fluorescence microscopy
hydroporphyrins
near-infrared
photoblinking
plant cells
polymer dots
Journal
ACS applied materials & interfaces
ISSN: 1944-8252
Titre abrégé: ACS Appl Mater Interfaces
Pays: United States
ID NLM: 101504991
Informations de publication
Date de publication:
11 May 2022
11 May 2022
Historique:
pubmed:
23
4
2022
medline:
19
5
2022
entrez:
22
4
2022
Statut:
ppublish
Résumé
Near-infrared (NIR) fluorescent semiconductor polymer dots (Pdots) have shown great potential for fluorescence imaging due to their exceptional chemical and photophysical properties. This paper describes the synthesis of NIR-emitting Pdots with great control and tunability of emission peak wavelength. The Pdots were prepared by doping poly[(9,9-dioctylfluorenyl-2,7-diyl)-alt-co-(1,4-benzo-(2,1',3)-thiadiazole)] (PFBT), a semiconducting polymer commonly used as a host polymer in luminescent Pdots, with a series of chlorins and bacteriochlorins with varying functional groups. Chlorins and bacteriochlorins are ideal dopants due to their high hydrophobicity, which precludes their use as molecular probes in aqueous biological media but on the other hand prevents their leakage when doped into Pdots. Additionally, chlorins and bacteriochlorins have narrow deep red to NIR-emission bands and the wide array of synthetic modifications available for modifying their molecular structure enables tuning their emission predictably and systematically. Transmission electron microscopy (TEM) and dynamic light scattering (DLS) measurements show the chlorin- and bacteriochlorin-doped Pdots to be nearly spherical with an average diameter of 46 ± 12 nm. Efficient energy transfer between PFBT and the doped chlorins or bacteriochlorins decreases the PFBT donor emission to near baseline level and increases the emission of the doped dyes that serve as acceptors. The chlorin- and bacteriochlorin-doped Pdots show narrow emission bands ranging from 640 to 820 nm depending on the doped dye. The paper demonstrates the utility of the systematic chlorin and bacteriochlorin synthesis approach by preparing Pdots of varying emission peak wavelength, utilizing them to visualize multiple targets using wide-field fluorescence microscopy, binding them to secondary antibodies, and determining the binding of secondary antibody-conjugated Pdots to primary antibody-labeled receptors in plant cells. Additionally, the chlorin- and bacteriochlorin-doped Pdots show a blinking behavior that could enable their use in super-resolution imaging methods like STORM.
Identifiants
pubmed: 35451825
doi: 10.1021/acsami.2c02551
pmc: PMC9210996
mid: NIHMS1810327
doi:
Substances chimiques
Polymers
0
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
20790-20801Subventions
Organisme : NIGMS NIH HHS
ID : T32 GM066706
Pays : United States
Références
ACS Omega. 2020 Jun 16;5(25):15657-15665
pubmed: 32637840
Arterioscler Thromb Vasc Biol. 2003 Jul 1;23(7):1161-8
pubmed: 12689915
Proc Natl Acad Sci U S A. 2018 Jun 26;115(26):6590-6595
pubmed: 29891702
Chem Rev. 2017 Jan 25;117(2):344-535
pubmed: 27498781
J Org Chem. 2010 Feb 19;75(4):1016-39
pubmed: 20088604
New Phytol. 2015 Apr;206(2):774-84
pubmed: 25627577
J Org Chem. 2006 Sep 1;71(18):7049-52
pubmed: 16930061
Nat Nanotechnol. 2016 May;11(5):479-86
pubmed: 26925827
Science. 2006 Sep 15;313(5793):1642-5
pubmed: 16902090
J Org Chem. 2009 May 1;74(9):3237-47
pubmed: 19388711
New J Chem. 2016;40(9):7721-7740
pubmed: 28154477
Nat Methods. 2008 Sep;5(9):763-75
pubmed: 18756197
Elife. 2017 Mar 06;6:
pubmed: 28262094
J Mater Chem B. 2018 Dec 21;6(47):7871-7876
pubmed: 32255032
J Org Chem. 2018 Aug 17;83(16):9076-9087
pubmed: 30033724
ACS Appl Nano Mater. 2018 Sep 28;1(9):4788-4800
pubmed: 30931431
Plant J. 1998 Dec;16(6):735-43
pubmed: 10069079
Angew Chem Int Ed Engl. 2021 Aug 16;60(34):18630-18638
pubmed: 34133838
J Biomater Sci Polym Ed. 2008;19(11):1469-85
pubmed: 18973724
Chem Sci. 2016 Sep 1;7(9):6203-6207
pubmed: 30034761
ACS Cent Sci. 2017 Apr 26;3(4):329-337
pubmed: 28470051
Photochem Photobiol. 2013 May-Jun;89(3):586-604
pubmed: 23360219
Colloids Surf B Biointerfaces. 2015 Jan 1;125:222-9
pubmed: 25499228
Environ Health Perspect. 2006 Feb;114(2):165-72
pubmed: 16451849
Anal Chem. 2019 Jun 4;91(11):7112-7117
pubmed: 31088079
Photochem Photobiol. 2007 Sep-Oct;83(5):1110-24
pubmed: 17880506
Bioconjug Chem. 2020 Feb 19;31(2):214-223
pubmed: 31756298
Sci Rep. 2016 Nov 23;6:37677
pubmed: 27876896
Angew Chem Int Ed Engl. 2019 May 20;58(21):7008-7012
pubmed: 30912228
Chem Asian J. 2021 Feb 1;16(3):175-184
pubmed: 33331122
PLoS One. 2013 Nov 27;8(11):e81903
pubmed: 24312378
Photochem Photobiol. 2007 Sep-Oct;83(5):1125-43
pubmed: 17880507
J Org Chem. 2014 Sep 5;79(17):7910-25
pubmed: 25061710
J Am Chem Soc. 2010 Nov 3;132(43):15410-7
pubmed: 20929226
J Phys Chem B. 2011 Sep 22;115(37):10801-16
pubmed: 21875047
Bioconjug Chem. 2019 Jan 16;30(1):169-183
pubmed: 30475591
J Org Chem. 2007 Sep 28;72(20):7736-49
pubmed: 17803319
Prog Mol Biol Transl Sci. 2013;113:59-108
pubmed: 23244789
ACS Nano. 2008 Nov 25;2(11):2415-23
pubmed: 19206410
Nat Methods. 2006 Oct;3(10):793-5
pubmed: 16896339
ACS Nano. 2011 Feb 22;5(2):1468-75
pubmed: 21280613
Bioconjug Chem. 2020 Apr 15;31(4):1088-1092
pubmed: 32227983
Biomaterials. 2018 Feb;155:217-235
pubmed: 29190479
ACS Nano. 2017 Mar 28;11(3):3166-3177
pubmed: 28221751
Chem Sci. 2017 May 1;8(5):3390-3398
pubmed: 28507710
Chem Rev. 2010 Oct 13;110(10):6260-79
pubmed: 20684570
iScience. 2021 Feb 15;24(3):102189
pubmed: 33718839