Investigating Biomarkers for
USH2A
Usher syndrome
adaptive optics scanning laser ophthalmoscopy
fundus autofluorescence
retinitis pigmentosa
spectral-domain optical coherence tomography
Journal
International journal of molecular sciences
ISSN: 1422-0067
Titre abrégé: Int J Mol Sci
Pays: Switzerland
ID NLM: 101092791
Informations de publication
Date de publication:
11 Apr 2022
11 Apr 2022
Historique:
received:
01
03
2022
revised:
03
04
2022
accepted:
06
04
2022
entrez:
23
4
2022
pubmed:
24
4
2022
medline:
27
4
2022
Statut:
epublish
Résumé
Pathogenic mutations in USH2A are a leading cause of visual loss secondary to non-syndromic or Usher syndrome-associated retinitis pigmentosa (RP). With an increasing number of RP-targeted clinical trials in progress, we sought to evaluate the photoreceptor topography underlying patterns of loss observed on clinical retinal imaging to guide surrogate endpoint selection in USH2A retinopathy. In this prospective cross-sectional study, twenty-five patients with molecularly confirmed USH2A-RP underwent fundus autofluorescence (FAF), spectral-domain optical coherence tomography (SD-OCT) and adaptive optics scanning laser ophthalmoscopy (AOSLO) retinal imaging. Analysis comprised measurement of FAF horizontal inner (IR) and outer (OR) hyperautofluorescent ring diameter; SD-OCT ellipsoid zone (EZ) and external limiting membrane (ELM) width, normalised EZ reflectance; AOSLO foveal cone density and intact macular photoreceptor mosaic (IMPM) diameter. Thirty-two eyes from 16 patients (mean age ± SD, 36.0 ± 14.2 years) with USH2A-associated Usher syndrome type 2 (n = 14) or non-syndromic RP (n = 2) met the inclusion criteria. Spatial alignment was observed between IR-EZ and OR-ELM diameters/widths (p < 0.001). The IMPM border occurred just lateral to EZ loss (p < 0.001), although sparser intact photoreceptor inner segments were detected until ELM disruption. EZ width and IR diameter displayed a biphasic relationship with cone density whereby slow cone loss occurred until retinal degeneration reached ~1350 μm from the fovea, beyond which greater reduction in cone density followed. Normalised EZ reflectance and cone density were significantly associated (p < 0.001). As the strongest correlate of cone density (p < 0.001) and best-corrected visual acuity (p < 0.001), EZ width is the most sensitive biomarker of structural and functional decline in USH2A retinopathy, rendering it a promising trial endpoint.
Identifiants
pubmed: 35457016
pii: ijms23084198
doi: 10.3390/ijms23084198
pmc: PMC9024786
pii:
doi:
Substances chimiques
Biomarkers
0
Extracellular Matrix Proteins
0
USH2A protein, human
0
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Subventions
Organisme : Wellcome Trust
ID : 205174/Z/16/Z
Pays : United Kingdom
Références
Invest Ophthalmol Vis Sci. 2013 Aug 28;54(8):5836-47
pubmed: 23908179
J Chronic Dis. 1983;36(8):595-603
pubmed: 6885960
Ophthalmology. 1997 Mar;104(3):460-5
pubmed: 9082273
Proc Natl Acad Sci U S A. 2007 Mar 13;104(11):4413-8
pubmed: 17360538
Hum Mol Genet. 2020 Jul 21;29(11):1882-1899
pubmed: 31998945
Graefes Arch Clin Exp Ophthalmol. 2019 Jun;257(6):1169-1181
pubmed: 30937533
Clin Ophthalmol. 2013;7:203-10
pubmed: 23378739
Am J Ophthalmol. 2015 Aug;160(2):290-300.e1
pubmed: 25935100
Am J Ophthalmol. 2008 Apr;145(4):687-94
pubmed: 18242574
Am J Ophthalmol. 2015 Oct;160(4):786-98.e4
pubmed: 26164827
Invest Ophthalmol Vis Sci. 1998 Nov;39(12):2405-16
pubmed: 9804149
Prog Retin Eye Res. 1998 Apr;17(2):175-205
pubmed: 9695792
Graefes Arch Clin Exp Ophthalmol. 2017 Nov;255(11):2119-2126
pubmed: 28791546
PLoS One. 2013 Nov 19;8(11):e79447
pubmed: 24260224
Invest Ophthalmol Vis Sci. 2015 Jul;56(8):4431-8
pubmed: 26193919
Br J Ophthalmol. 2021 Jan;105(1):87-92
pubmed: 32188678
Retina. 2011 Sep;31(8):1670-9
pubmed: 21394059
Genet Med. 2010 Aug;12(8):512-6
pubmed: 20613545
Invest Ophthalmol Vis Sci. 2011 Sep 21;52(10):7376-84
pubmed: 21724911
J Opt Soc Am A Opt Image Sci Vis. 1997 Nov;14(11):2884-92
pubmed: 9379246
Nat Neurosci. 2021 Jan;24(1):74-81
pubmed: 33288907
PLoS One. 2014 Sep 09;9(9):e107402
pubmed: 25203681
J Chronic Dis. 1969 Aug;22(3):133-51
pubmed: 4897966
PLoS One. 2016 Feb 04;11(2):e0148022
pubmed: 26845445
JAMA Ophthalmol. 2013 Jan;131(1):67-74
pubmed: 22964989
J Neurosci. 2014 Jun 11;34(24):8139-50
pubmed: 24920619
Am J Ophthalmol. 2020 Nov;219:87-100
pubmed: 32446738
Br J Ophthalmol. 2021 May;105(5):694-703
pubmed: 32675063
Acta Ophthalmol. 2021 Jun;99(4):e447-e460
pubmed: 33124170
Br J Ophthalmol. 2006 Apr;90(4):472-9
pubmed: 16547330
J Comp Neurol. 1990 Feb 22;292(4):497-523
pubmed: 2324310
Opt Express. 2002 May 6;10(9):405-12
pubmed: 19436374
Biomed Opt Express. 2011 Jun 1;2(6):1757-68
pubmed: 21698035
Vision Res. 2012 Dec 15;75:60-70
pubmed: 23000274
Acta Ophthalmol. 2021 Aug;99(5):499-510
pubmed: 33258268
Invest Ophthalmol Vis Sci. 2014 Dec 16;56(1):372-81
pubmed: 25515570
Adv Exp Med Biol. 2016;854:291-7
pubmed: 26427424
Ophthalmology. 2016 May;123(5):1151-60
pubmed: 26927203
Lancet. 2006 Nov 18;368(9549):1795-809
pubmed: 17113430
Transl Vis Sci Technol. 2018 Jun 04;7(3):13
pubmed: 29881650
Clin Exp Ophthalmol. 2010 Aug;38(6):597-604
pubmed: 20456441
Prog Retin Eye Res. 2020 Jul;77:100828
pubmed: 31911236
Invest Ophthalmol Vis Sci. 2004 Nov;45(11):4119-25
pubmed: 15505064
Invest Ophthalmol Vis Sci. 2017 May 1;58(6):BIO255-BIO267
pubmed: 28873135
Invest Ophthalmol Vis Sci. 2011 Apr 06;52(5):2219-26
pubmed: 21087953
Am J Ophthalmol. 2012 Apr;153(4):718-27, 727.e1-2
pubmed: 22137208
Eye (Lond). 2019 Nov;33(11):1683-1698
pubmed: 31164730
Transl Vis Sci Technol. 2020 Oct 08;9(11):9
pubmed: 33133772
Invest Ophthalmol Vis Sci. 2014 Oct 02;55(11):7303-11
pubmed: 25277229
Am J Ophthalmol. 2018 Sep;193:114-129
pubmed: 29953849
Prog Retin Eye Res. 2021 Jul;83:100920
pubmed: 33161127
Invest Ophthalmol Vis Sci. 2014 Jun 06;55(7):4244-51
pubmed: 24906859
Invest Ophthalmol Vis Sci. 2017 Jul 1;58(9):3456-3463
pubmed: 28702674
Invest Ophthalmol Vis Sci. 2007 Jul;48(7):3283-91
pubmed: 17591900
Am J Ophthalmol. 2015 Sep;160(3):588-595.e2
pubmed: 26095264
Eur J Hum Genet. 2015 Oct;23(10):1318-27
pubmed: 25649381
Transl Vis Sci Technol. 2019 May 08;8(3):17
pubmed: 31114717
Biomed Opt Express. 2013 Aug 23;4(9):1710-23
pubmed: 24049692
Int J Mol Sci. 2020 Apr 15;21(8):
pubmed: 32326409
Nat Genet. 2004 Jul;36(7):755-9
pubmed: 15220920
Int J Mol Sci. 2020 Oct 22;21(21):
pubmed: 33105608
Exp Eye Res. 2020 Dec;201:108330
pubmed: 33121974
Biomed Opt Express. 2016 Nov 03;7(12):4899-4918
pubmed: 28018714
Invest Ophthalmol Vis Sci. 2016 May 1;57(6):2428-42
pubmed: 27145477
Jpn J Ophthalmol. 2020 Sep;64(5):485-496
pubmed: 32627106
Otol Neurotol. 2019 Jan;40(1):121-129
pubmed: 30531642
Ther Adv Ophthalmol. 2020 Sep 17;12:2515841420952194
pubmed: 32995707
Ophthalmic Res. 2022;65(2):180-195
pubmed: 34781295
Acta Ophthalmol. 2010 Aug;88(5):e177-83
pubmed: 20491687