Micro-RNA-215 and -375 regulate thymidylate synthase protein expression in pleural mesothelioma and mediate epithelial to mesenchymal transition.


Journal

Virchows Archiv : an international journal of pathology
ISSN: 1432-2307
Titre abrégé: Virchows Arch
Pays: Germany
ID NLM: 9423843

Informations de publication

Date de publication:
Aug 2022
Historique:
received: 21 08 2021
accepted: 05 04 2022
revised: 03 04 2022
pubmed: 25 4 2022
medline: 4 8 2022
entrez: 24 4 2022
Statut: ppublish

Résumé

The standard front-line treatment for pleural mesothelioma (PM) is pemetrexed-based chemotherapy, whose major target is thymidylate synthase (TS). In several cancer models, miR-215 and miR-375 have been shown to target TS, while information on these miRNAs in PM are still limited although suggest their role in epithelial to mesenchymal transition. Seventy-one consecutive PM tissues (4 biphasic, 7 sarcomatoid, and 60 epithelioid types) and 16 commercial and patient-derived PM cell lines were screened for TS, miR-215, and miR-375 expression. REN and 570B cells were selected for miR-215 and miR-375 transient transfections to test TS modulation. ZEB1 protein expression in tumor samples was also tested. Moreover, genetic profile was investigated by means of BAP1 and p53 immunohistochemistry. Expression of both miR-215 and miR-375 was significantly higher in epithelioid histotype. Furthermore, inverse correlation between TS protein and both miR-215 and miR-375 expression was found. Efficiently transfected REN and 570B cell lines overexpressing miR-215 and miR-375 showed decreased TS protein levels. Epithelioid PM with a mesenchymal component highlighted by reticulin stain showed significantly higher TS and ZEB1 protein and lower miRNA expression. A better survival was recorded for BAP1 lost/TS low cases. Our data indicate that miR-215 and miR-375 are involved in TS regulation as well as in epithelial-to-mesenchymal transition in PM.

Identifiants

pubmed: 35461395
doi: 10.1007/s00428-022-03321-8
pii: 10.1007/s00428-022-03321-8
pmc: PMC9343276
doi:

Substances chimiques

MIRN215 microRNA, human 0
MIRN375 microRNA, human 0
MicroRNAs 0
Thymidylate Synthase EC 2.1.1.45

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

233-244

Subventions

Organisme : Associazione Italiana per la Ricerca sul Cancro
ID : IG 2019 - ID 23760
Organisme : Regione Piemonte
ID : GR-2011-02348356

Commentaires et corrections

Type : ErratumIn

Informations de copyright

© 2022. The Author(s).

Références

Meyerhoff RR, Yang C-FJ, Speicher PJ et al (2015) Impact of mesothelioma histologic subtype on outcomes in the Surveillance, Epidemiology, and End Results database. J Surg Res 196:23–32. https://doi.org/10.1016/j.jss.2015.01.043
doi: 10.1016/j.jss.2015.01.043 pubmed: 25791825 pmcid: 4430361
Katzman D, Sterman DH (2018) Updates in the diagnosis and treatment of malignant pleural mesothelioma. Curr Opin Pulm Med 24:319–326. https://doi.org/10.1097/MCP.0000000000000489
doi: 10.1097/MCP.0000000000000489 pubmed: 29553973
Kim RY, Sterman DH, Haas AR (2019) Malignant mesothelioma: has anything changed? Semin Respir Crit Care Med 40:347–360. https://doi.org/10.1055/s-0039-1693406
doi: 10.1055/s-0039-1693406 pubmed: 31525810
Sayan M, Eren MF, Gupta A et al (2019) Current treatment strategies in malignant pleural mesothelioma with a treatment algorithm. Advances in Respiratory Medicine 87:289–297. https://doi.org/10.5603/ARM.2019.0051
doi: 10.5603/ARM.2019.0051 pubmed: 31680229
Adjei AA (2004) Pharmacology and mechanism of action of pemetrexed. Clin Lung Cancer 5(Suppl 2):S51-55. https://doi.org/10.3816/clc.2004.s.003
doi: 10.3816/clc.2004.s.003 pubmed: 15117425
Takezawa K, Okamoto I, Okamoto W et al (2011) Thymidylate synthase as a determinant of pemetrexed sensitivity in non-small cell lung cancer. Br J Cancer 104:1594–1601. https://doi.org/10.1038/bjc.2011.129
doi: 10.1038/bjc.2011.129 pubmed: 21487406 pmcid: 3101907
Sigmond J, Backus HHJ, Wouters D et al (2003) Induction of resistance to the multitargeted antifolate Pemetrexed (ALIMTA) in WiDr human colon cancer cells is associated with thymidylate synthase overexpression. Biochem Pharmacol 66:431–438. https://doi.org/10.1016/s0006-2952(03)00287-9
doi: 10.1016/s0006-2952(03)00287-9 pubmed: 12907242
Giovannetti E, Lemos C, Tekle C et al (2008) Molecular mechanisms underlying the synergistic interaction of erlotinib, an epidermal growth factor receptor tyrosine kinase inhibitor, with the multitargeted antifolate pemetrexed in non-small-cell lung cancer cells. Mol Pharmacol 73:1290–1300. https://doi.org/10.1124/mol.107.042382
doi: 10.1124/mol.107.042382 pubmed: 18187583
Monica V, Scagliotti GV, Ceppi P et al (2009) Differential thymidylate synthase expression in different variants of large-cell carcinoma of the lung. Clin Cancer Res 15:7547–7552. https://doi.org/10.1158/1078-0432.CCR-09-1641
doi: 10.1158/1078-0432.CCR-09-1641 pubmed: 19996214
Lizard-Nacol S, Genne P, Coudert B et al (1999) MDR1 and thymidylate synthase (TS) gene expressions in advanced breast cancer: relationships to drug exposure, p53 mutations, and clinical outcome of the patients. Anticancer Res 19:3575–3581
pubmed: 10629655
Abu Lila AS, Fukushima M, Huang C-L et al (2016) Systemically administered RNAi molecule sensitizes malignant pleural mesotheliomal cells to pemetrexed therapy. Mol Pharm 13:3955–3963. https://doi.org/10.1021/acs.molpharmaceut.6b00728
doi: 10.1021/acs.molpharmaceut.6b00728 pubmed: 27740765
Bott M, Brevet M, Taylor BS et al (2011) The nuclear deubiquitinase BAP1 is commonly inactivated by somatic mutations and 3p21.1 losses in malignant pleural mesothelioma. Nat Genet 43:668–672. https://doi.org/10.1038/ng.855
doi: 10.1038/ng.855 pubmed: 21642991 pmcid: 4643098
Bueno R, Stawiski EW, Goldstein LD et al (2016) Comprehensive genomic analysis of malignant pleural mesothelioma identifies recurrent mutations, gene fusions and splicing alterations. Nat Genet 48:407–416. https://doi.org/10.1038/ng.3520
doi: 10.1038/ng.3520 pubmed: 26928227
Hmeljak J, Sanchez-Vega F, Hoadley KA et al (2018) Integrative molecular characterization of malignant pleural mesothelioma. Cancer Discov 8:1548–1565. https://doi.org/10.1158/2159-8290.CD-18-0804
doi: 10.1158/2159-8290.CD-18-0804 pubmed: 30322867 pmcid: 6310008
Ghini F, Rubolino C, Climent M et al (2018) Endogenous transcripts control miRNA levels and activity in mammalian cells by target-directed miRNA degradation. Nat Commun 9:3119. https://doi.org/10.1038/s41467-018-05182-9
doi: 10.1038/s41467-018-05182-9 pubmed: 30087332 pmcid: 6081425
Valencia-Sanchez MA, Liu J, Hannon GJ, Parker R (2006) Control of translation and mRNA degradation by miRNAs and siRNAs. Genes Dev 20:515–524. https://doi.org/10.1101/gad.1399806
doi: 10.1101/gad.1399806 pubmed: 16510870
Wang H, Peng R, Wang J, et al (2018) Circulating microRNAs as potential cancer biomarkers: the advantage and disadvantage. Clin Epigenetics 10: https://doi.org/10.1186/s13148-018-0492-1
Chen M, Calin GA, Meng QH (2014) Chapter Five - Circulating microRNAs as promising tumor biomarkers. In: Makowski GS (ed) Advances in Clinical Chemistry. Elsevier, pp 189–214
Birnie KA, Prêle CM, Musk AWB et al (2019) MicroRNA signatures in malignant pleural mesothelioma effusions. Dis Markers 2019:8628612. https://doi.org/10.1155/2019/8628612
doi: 10.1155/2019/8628612 pubmed: 31481984 pmcid: 6701424
Pinelli S, Alinovi R, Poli D, et al (2021) Overexpression of microRNA‑486 affects the proliferation and chemosensitivity of mesothelioma cell lines by targeting PIM1. Int J Mol Med 47: https://doi.org/10.3892/ijmm.2021.4950
Suzuki R, Amatya VJ, Kushitani K et al (2020) Inhibition of miR-18a-3p reduces proliferation of mesothelioma cells and sensitizes them to cisplatin. Oncol Lett 19:4161–4168. https://doi.org/10.3892/ol.2020.11504
doi: 10.3892/ol.2020.11504 pubmed: 32382354 pmcid: 7202271
Singh A, Pruett N, Pahwa R et al (2021) MicroRNA-206 suppresses mesothelioma progression via the Ras signaling axis. Mol Ther Nucleic Acids 24:669–681. https://doi.org/10.1016/j.omtn.2021.04.001
doi: 10.1016/j.omtn.2021.04.001 pubmed: 33996251 pmcid: 8093312
Siddiqui A, Vazakidou ME, Schwab A et al (2017) Thymidylate synthase is functionally associated with ZEB1 and contributes to the epithelial-to-mesenchymal transition of cancer cells. J Pathol 242:221–233. https://doi.org/10.1002/path.4897
doi: 10.1002/path.4897 pubmed: 28337746
Singh A, Bhattacharyya N, Srivastava A et al (2019) MicroRNA-215-5p treatment suppresses mesothelioma progression via the MDM2-p53-signaling axis. Mol Ther 27:1665–1680. https://doi.org/10.1016/j.ymthe.2019.05.020
doi: 10.1016/j.ymthe.2019.05.020 pubmed: 31227395 pmcid: 6731470
Yan J, Gumireddy K, Li A, Huang Q (2013) Regulation of mesenchymal phenotype by microRNAs in cancer. Curr Cancer Drug Targets 13:930
doi: 10.2174/15680096113136660098
Zhang J, Ma L (2012) MicroRNA control of epithelial–mesenchymal transition and metastasis. Cancer Metastasis Rev 31:653–662. https://doi.org/10.1007/s10555-012-9368-6
doi: 10.1007/s10555-012-9368-6 pubmed: 22684369 pmcid: 3686549
Ceppi P, Peter ME (2014) MicroRNAs regulate both epithelial-to-mesenchymal transition and cancer stem cells. Oncogene 33:269–278. https://doi.org/10.1038/onc.2013.55
doi: 10.1038/onc.2013.55 pubmed: 23455327
Sánchez-Tilló E, Siles L, de Barrios O et al (2011) Expanding roles of ZEB factors in tumorigenesis and tumor progression. Am J Cancer Res 1:897–912
pubmed: 22016835 pmcid: 3196287
Zhang P, Sun Y, Ma L (2015) ZEB1: At the crossroads of epithelial-mesenchymal transition, metastasis and therapy resistance. Cell Cycle 14:481–487. https://doi.org/10.1080/15384101.2015.1006048
doi: 10.1080/15384101.2015.1006048 pubmed: 25607528 pmcid: 4614883
Kim DH, Xing T, Yang Z, et al (2017) Epithelial mesenchymal transition in embryonic development, tissue repair and cancer: a comprehensive overview. J Clin Med 7: https://doi.org/10.3390/jcm7010001
Lamouille S, Xu J, Derynck R (2014) Molecular mechanisms of epithelial–mesenchymal transition. Nat Rev Mol Cell Biol 15:178–196. https://doi.org/10.1038/nrm3758
doi: 10.1038/nrm3758 pubmed: 24556840 pmcid: 4240281
Loh C-Y, Chai JY, Tang TF, et al (2019) The E-cadherin and N-cadherin switch in epithelial-to-mesenchymal transition: signaling, therapeutic implications, and challenges. Cells 8: https://doi.org/10.3390/cells8101118
Fassina A, Cappellesso R, Guzzardo V et al (2012) Epithelial-mesenchymal transition in malignant mesothelioma. Mod Pathol 25:86–99. https://doi.org/10.1038/modpathol.2011.144
doi: 10.1038/modpathol.2011.144 pubmed: 21983934
Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 25:402–408. https://doi.org/10.1006/meth.2001.1262
doi: 10.1006/meth.2001.1262 pubmed: 11846609
Righi L, Volante M, Rapa I et al (2010) Mammalian target of rapamycin signaling activation patterns in neuroendocrine tumors of the lung. Endocr Relat Cancer 17:977–987. https://doi.org/10.1677/ERC-10-0157
doi: 10.1677/ERC-10-0157 pubmed: 20817788
Naso JR, Tessier-Cloutier B, Senz J et al (2022) Significance of p53 immunostaining in mesothelial proliferations and correlation with TP53 mutation status. Mod Pathol 35:77–81. https://doi.org/10.1038/s41379-021-00920-9
doi: 10.1038/s41379-021-00920-9 pubmed: 34497363
Righi L, Duregon E, Vatrano S et al (2016) BRCA1-associated protein 1 (BAP1) immunohistochemical expression as a diagnostic tool in malignant pleural mesothelioma classification: a large retrospective study. J Thorac Oncol 11:2006–2017. https://doi.org/10.1016/j.jtho.2016.06.020
doi: 10.1016/j.jtho.2016.06.020 pubmed: 27422796
Galateau Salle F, Le Stang N, Tirode F et al (2020) Comprehensive molecular and pathologic evaluation of transitional mesothelioma assisted by deep learning approach: a multi-institutional study of the International Mesothelioma Panel from the MESOPATH Reference Center. J Thorac Oncol 15:1037–1053. https://doi.org/10.1016/j.jtho.2020.01.025
doi: 10.1016/j.jtho.2020.01.025 pubmed: 32165206
Baas P, Scherpereel A, Nowak A et al (2020) ID:2908 First-line nivolumab + ipilimumab vs chemotherapy in unresectable malignant pleural mesothelioma: checkmate 743. J Thorac Oncol 15:e42. https://doi.org/10.1016/j.jtho.2020.08.004
doi: 10.1016/j.jtho.2020.08.004
Fennell D, Ottensmeier C, Califano R et al (2021) PS01.11 nivolumab versus placebo in relapsed malignant mesothelioma: the CONFIRM Phase 3 Trial. J Thoracic Oncol 16:S62. https://doi.org/10.1016/j.jtho.2021.01.323
doi: 10.1016/j.jtho.2021.01.323
Aznab M, Ahmadi SM, Khazaei S et al (2020) Relationship between the expression of the thymidylate synthase and the prognosis of gastric cancer patients treated with combinational chemotherapy regimen including fluorouracil, docetaxel and cisplatin. Int J Hematol Oncol Stem Cell Res 14:181–187. https://doi.org/10.18502/ijhoscr.v14i3.3727
doi: 10.18502/ijhoscr.v14i3.3727 pubmed: 33024525 pmcid: 7521394
Righi L, Papotti MG, Ceppi P et al (2010) Thymidylate synthase but not excision repair cross-complementation group 1 tumor expression predicts outcome in patients with malignant pleural mesothelioma treated with pemetrexed-based chemotherapy. J Clin Oncol 28:1534–1539. https://doi.org/10.1200/JCO.2009.25.9275
doi: 10.1200/JCO.2009.25.9275 pubmed: 20177021
Gotanda K, Hirota T, Matsumoto N, Ieiri I (2013) MicroRNA-433 negatively regulates the expression of thymidylate synthase (TYMS) responsible for 5-fluorouracil sensitivity in HeLa cells. BMC Cancer 13:369. https://doi.org/10.1186/1471-2407-13-369
doi: 10.1186/1471-2407-13-369 pubmed: 23915286 pmcid: 3750578
Tomasetti M, Gaetani S, Monaco F et al (2019) Epigenetic regulation of miRNA expression in malignant mesothelioma: mirnas as biomarkers of early diagnosis and therapy. Front Oncol 9:1293. https://doi.org/10.3389/fonc.2019.01293
doi: 10.3389/fonc.2019.01293 pubmed: 31850200 pmcid: 6897284
Williams M, Kirschner MB, Cheng YY et al (2015) miR-193a-3p is a potential tumor suppressor in malignant pleural mesothelioma. Oncotarget 6:23480–23495
doi: 10.18632/oncotarget.4346
Reid G, Johnson TG, van Zandwijk N (2020) Manipulating microRNAs for the treatment of malignant pleural mesothelioma: past, present and future. Front Oncol 10:105. https://doi.org/10.3389/fonc.2020.00105
doi: 10.3389/fonc.2020.00105 pubmed: 32117755 pmcid: 7020748
Siddiqui MA, Gollavilli PN, Ramesh V et al (2021) Thymidylate synthase drives the phenotypes of epithelial-to-mesenchymal transition in non-small cell lung cancer. Br J Cancer 124:281–289. https://doi.org/10.1038/s41416-020-01095-x
doi: 10.1038/s41416-020-01095-x pubmed: 33024270
Bronte G, Incorvaia L, Rizzo S et al (2016) The resistance related to targeted therapy in malignant pleural mesothelioma: why has not the target been hit yet? Crit Rev Oncol Hematol 107:20–32. https://doi.org/10.1016/j.critrevonc.2016.08.011
doi: 10.1016/j.critrevonc.2016.08.011 pubmed: 27823648
Sato Y, Tomita M, Soga T et al (2021) Upregulation of thymidylate synthase induces pemetrexed resistance in malignant pleural mesothelioma. Front Pharmacol 12:718675. https://doi.org/10.3389/fphar.2021.718675
doi: 10.3389/fphar.2021.718675 pubmed: 34646134 pmcid: 8504579
Scherpereel A, Mazieres J, Greillier L et al (2019) Nivolumab or nivolumab plus ipilimumab in patients with relapsed malignant pleural mesothelioma (IFCT-1501 MAPS2): a multicentre, open-label, randomised, non-comparative, phase 2 trial. Lancet Oncol 20:239–253. https://doi.org/10.1016/S1470-2045(18)30765-4
doi: 10.1016/S1470-2045(18)30765-4 pubmed: 30660609
Galateau Salle F, Le Stang N, Nicholson AG et al (2018) New insights on diagnostic reproducibility of biphasic mesotheliomas: a multi-institutional evaluation by the international mesothelioma panel from the MESOPATH Reference Center. J Thorac Oncol 13:1189–1203. https://doi.org/10.1016/j.jtho.2018.04.023
doi: 10.1016/j.jtho.2018.04.023 pubmed: 29723687
de Reyniès A, Jaurand M-C, Renier A et al (2014) Molecular classification of malignant pleural mesothelioma: identification of a poor prognosis subgroup linked to the epithelial-to-mesenchymal transition. Clin Cancer Res 20:1323–1334. https://doi.org/10.1158/1078-0432.CCR-13-2429
doi: 10.1158/1078-0432.CCR-13-2429 pubmed: 24443521
Righi L, Cavallo MC, Gatti G et al (2014) Tumor/stromal caveolin-1 expression patterns in pleural mesothelioma define a subgroup of the epithelial histotype with poorer prognosis. Am J Clin Pathol 141:816–827. https://doi.org/10.1309/AJCP0F6WYBXGVDHX
doi: 10.1309/AJCP0F6WYBXGVDHX pubmed: 24838326

Auteurs

Francesca Napoli (F)

Department of Oncology, University of Turin, San Luigi Hospital, Regione Gonzole 10, Orbassano, Turin, Italy.

Ida Rapa (I)

Pathology Unit, San Luigi Hospital, Orbassano, Turin, Italy.

Stefania Izzo (S)

Pathology Unit, San Luigi Hospital, Orbassano, Turin, Italy.

Angelica Rigutto (A)

Department of Oncology, University of Turin, San Luigi Hospital, Regione Gonzole 10, Orbassano, Turin, Italy.
Department of Medical Oncology and Hematology, University Hospital of Zurich, Zurich, Switzerland.

Roberta Libener (R)

Pathology Division, Saints Antonio and Biagio Hospital, Alessandria, Italy.

Chiara Riganti (C)

Department of Oncology, University of Turin, San Luigi Hospital, Regione Gonzole 10, Orbassano, Turin, Italy.
Interdepartmental Research Center of Molecular Biotechnology, University of Turin, Turin, Italy.
Interdepartmental Centre for Studies On Asbestos and Other Toxic Particulates, University of Turin, Turin, Italy.

Paolo Bironzo (P)

Department of Oncology, University of Turin, San Luigi Hospital, Regione Gonzole 10, Orbassano, Turin, Italy.

Riccardo Taulli (R)

Center for Experimental Research and Medical Studies (CeRMS), City of Health and Science University Hospital, Turin, Italy.

Mauro Papotti (M)

Department of Oncology, University of Turin, San Luigi Hospital, Regione Gonzole 10, Orbassano, Turin, Italy.
Pathology Unit, City of Health and Science University Hospital, Turin, Italy.

Marco Volante (M)

Department of Oncology, University of Turin, San Luigi Hospital, Regione Gonzole 10, Orbassano, Turin, Italy.

Giorgio Scagliotti (G)

Department of Oncology, University of Turin, San Luigi Hospital, Regione Gonzole 10, Orbassano, Turin, Italy.

Luisella Righi (L)

Department of Oncology, University of Turin, San Luigi Hospital, Regione Gonzole 10, Orbassano, Turin, Italy. luisella.righi@unito.it.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH