Shoot Branching Phenotyping in Arabidopsis and Tomato.


Journal

Methods in molecular biology (Clifton, N.J.)
ISSN: 1940-6029
Titre abrégé: Methods Mol Biol
Pays: United States
ID NLM: 9214969

Informations de publication

Date de publication:
2022
Historique:
entrez: 25 4 2022
pubmed: 26 4 2022
medline: 28 4 2022
Statut: ppublish

Résumé

Shoot branching is an important trait that depends on the activity of axillary meristems and buds and their outgrowth into branches. It is remarkably plastic, being influenced by a number of external cues, such as light, temperature, soil nutrients, and mechanical manipulation. These are transduced into an internal hormone signaling network where auxin, cytokinins, and strigolactones play leading regulatory roles. Recently, sugars have also emerged as important signals promoting bud activation. These signals are in part integrated by the bud-specific growth repressor BRANCHED1 (BRC1).To understand how shoot branching is affected by particular growth conditions or in specific plant lines, it is necessary to count the number of branches and/or quantify other branch-related parameters. Here we describe how to perform such quantifications in Arabidopsis and in tomato.

Identifiants

pubmed: 35467200
doi: 10.1007/978-1-0716-2297-1_5
doi:

Substances chimiques

Arabidopsis Proteins 0
BRC1 protein, Arabidopsis 0
Indoleacetic Acids 0
Transcription Factors 0

Types de publication

Journal Article Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

47-59

Informations de copyright

© 2022. The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature.

Références

Barbier FF, Dun EA, Kerr SC, Chabikwa TG, Beveridge CA (2019) An update on the signals controlling shoot branching. Trends Plant Sci 24(3):220–236. https://doi.org/10.1016/j.tplants.2018.12.001
doi: 10.1016/j.tplants.2018.12.001 pubmed: 30797425
Rameau C, Bertheloot J, Leduc N, Andrieu B, Foucher F, Sakr S (2014) Multiple pathways regulate shoot branching. Front Plant Sci 5:741. https://doi.org/10.3389/fpls.2014.00741
doi: 10.3389/fpls.2014.00741 pubmed: 25628627
Balla J, Medvedova Z, Kalousek P, Matijescukova N, Friml J, Reinohl V, Prochazka S (2016) Auxin flow-mediated competition between axillary buds to restore apical dominance. Sci Rep 6:35955. https://doi.org/10.1038/srep35955
doi: 10.1038/srep35955 pubmed: 27824063 pmcid: 5099894
Booker J, Chatfield S, Leyser O (2003) Auxin acts in xylem-associated or medullary cells to mediate apical dominance. Plant Cell 15(2):495–507
doi: 10.1105/tpc.007542
Prusinkiewicz P, Crawford S, Smith RS, Ljung K, Bennett T, Ongaro V, Leyser O (2009) Control of bud activation by an auxin transport switch. Proc Natl Acad Sci U S A 106(41):17431–17436. https://doi.org/10.1073/pnas.0906696106
doi: 10.1073/pnas.0906696106 pubmed: 19805140 pmcid: 2751654
Thimann KV, Skoog F (1933) Studies on the growth hormone of plants: III. The inhibiting action of the growth substance on bud development. Proc Natl Acad Sci U S A 19(7):714–716
doi: 10.1073/pnas.19.7.714
Domagalska MA, Leyser O (2011) Signal integration in the control of shoot branching. Nat Rev Mol Cell Biol 12(4):211–221. https://doi.org/10.1038/nrm3088
doi: 10.1038/nrm3088 pubmed: 21427763
Waldie T, Leyser O (2018) Cytokinin targets auxin transport to promote shoot branching. Plant Physiol 177(2):803–818. https://doi.org/10.1104/pp.17.01691
doi: 10.1104/pp.17.01691 pubmed: 29717021 pmcid: 6001322
Muller D, Waldie T, Miyawaki K, To JP, Melnyk CW, Kieber JJ, Kakimoto T, Leyser O (2015) Cytokinin is required for escape but not release from auxin mediated apical dominance. Plant J 82(5):874–886. https://doi.org/10.1111/tpj.12862
doi: 10.1111/tpj.12862 pubmed: 25904120 pmcid: 4691322
Chatfield SP, Stirnberg P, Forde BG, Leyser O (2000) The hormonal regulation of axillary bud growth in Arabidopsis. Plant J 24(2):159–169. https://doi.org/10.1046/j.1365-313x.2000.00862.x
doi: 10.1046/j.1365-313x.2000.00862.x pubmed: 11069691
Sachs T, Thimann KV (1967) The role of auxins and cytokinins in the release of buds from dominance. Am J Bot 54(1):136–144. https://doi.org/10.2307/2440896
doi: 10.2307/2440896
Crawford S, Shinohara N, Sieberer T, Williamson L, George G, Hepworth J, Muller D, Domagalska MA, Leyser O (2010) Strigolactones enhance competition between shoot branches by dampening auxin transport. Development 137(17):2905–2913. https://doi.org/10.1242/dev.051987
doi: 10.1242/dev.051987 pubmed: 20667910
Gomez-Roldan V, Fermas S, Brewer PB, Puech-Pages V, Dun EA, Pillot JP, Letisse F, Matusova R, Danoun S, Portais JC, Bouwmeester H, Becard G, Beveridge CA, Rameau C, Rochange SF (2008) Strigolactone inhibition of shoot branching. Nature 455(7210):189–194. https://doi.org/10.1038/nature07271
doi: 10.1038/nature07271 pubmed: 18690209
Ongaro V, Bainbridge K, Williamson L, Leyser O (2008) Interactions between axillary branches of Arabidopsis. Mol Plant 1(2):388–400. https://doi.org/10.1093/mp/ssn007
doi: 10.1093/mp/ssn007 pubmed: 19825548
Stirnberg P, van De Sande K, Leyser HM (2002) MAX1 and MAX2 control shoot lateral branching in Arabidopsis. Development 129(5):1131–1141
doi: 10.1242/dev.129.5.1131
Brewer PB, Dun EA, Ferguson BJ, Rameau C, Beveridge CA (2009) Strigolactone acts downstream of auxin to regulate bud outgrowth in pea and Arabidopsis. Plant Physiol 150(1):482–493. https://doi.org/10.1104/pp.108.134783
doi: 10.1104/pp.108.134783 pubmed: 19321710 pmcid: 2675716
Ni J, Gao C, Chen MS, Pan BZ, Ye K, Xu ZF (2015) Gibberellin promotes shoot branching in the perennial woody plant jatropha curcas. Plant Cell Physiol 56(8):1655–1666. https://doi.org/10.1093/pcp/pcv089
doi: 10.1093/pcp/pcv089 pubmed: 26076970 pmcid: 4523387
Gonzalez-Grandio E, Pajoro A, Franco-Zorrilla JM, Tarancon C, Immink RG, Cubas P (2017) Abscisic acid signaling is controlled by a BRANCHED1/HD-ZIP I cascade in Arabidopsis axillary buds. Proc Natl Acad Sci U S A 114(2):E245–E254. https://doi.org/10.1073/pnas.1613199114
doi: 10.1073/pnas.1613199114 pubmed: 28028241
Mason MG, Ross JJ, Babst BA, Wienclaw BN, Beveridge CA (2014) Sugar demand, not auxin, is the initial regulator of apical dominance. Proc Natl Acad Sci U S A 111(16):6092–6097. https://doi.org/10.1073/pnas.1322045111
doi: 10.1073/pnas.1322045111 pubmed: 24711430 pmcid: 4000805
Fichtner F, Barbier FF, Annunziata MG, Feil R, Olas JJ, Mueller-Roeber B, Stitt M, Beveridge CA, Lunn JE (2021) Regulation of shoot branching in Arabidopsis by trehalose 6-phosphate. New Phytol 229(4):2135–2151. https://doi.org/10.1111/nph.17006
doi: 10.1111/nph.17006 pubmed: 33068448
Fichtner F, Barbier FF, Feil R, Watanabe M, Annunziata MG, Chabikwa TG, Hofgen R, Stitt M, Beveridge CA, Lunn JE (2017) Trehalose 6-phosphate is involved in triggering axillary bud outgrowth in garden pea (Pisum sativum L.). Plant J 92(4):611–623. https://doi.org/10.1111/tpj.13705
doi: 10.1111/tpj.13705 pubmed: 28869799
Leduc N, Roman H, Barbier F, Peron T, Huche-Thelier L, Lothier J, Demotes-Mainard S, Sakr S (2014) Light signaling in bud outgrowth and branching in plants. Plants (Basel) 3(2):223–250. https://doi.org/10.3390/plants3020223
doi: 10.3390/plants3020223
Gonzalez-Grandio E, Poza-Carrion C, Sorzano CO, Cubas P (2013) BRANCHED1 promotes axillary bud dormancy in response to shade in Arabidopsis. Plant Cell 25(3):834–850. https://doi.org/10.1105/tpc.112.108480
doi: 10.1105/tpc.112.108480 pubmed: 23524661 pmcid: 3634692
Finlayson SA, Krishnareddy SR, Kebrom TH, Casal JJ (2010) Phytochrome regulation of branching in Arabidopsis. Plant Physiol 152(4):1914–1927. https://doi.org/10.1104/pp.109.148833
doi: 10.1104/pp.109.148833 pubmed: 20154098 pmcid: 2850038
Maurya JP, Singh RK, Miskolczi PC, Prasad AN, Jonsson K, Wu F, Bhalerao RP (2020) Branching regulator BRC1 mediates photoperiodic control of seasonal growth in hybrid aspen. Curr Biol 30(1):122–126.e122. https://doi.org/10.1016/j.cub.2019.11.001
doi: 10.1016/j.cub.2019.11.001 pubmed: 31839452
Singh RK, Svystun T, AlDahmash B, Jonsson AM, Bhalerao RP (2017) Photoperiod- and temperature-mediated control of phenology in trees – a molecular perspective. New Phytol 213(2):511–524. https://doi.org/10.1111/nph.14346
doi: 10.1111/nph.14346 pubmed: 27901272
Xu J, Zha M, Li Y, Ding Y, Chen L, Ding C, Wang S (2015) The interaction between nitrogen availability and auxin, cytokinin, and strigolactone in the control of shoot branching in rice (Oryza sativa L.). Plant Cell Rep 34(9):1647–1662. https://doi.org/10.1007/s00299-015-1815-8
doi: 10.1007/s00299-015-1815-8 pubmed: 26024762
de Jong M, George G, Ongaro V, Williamson L, Willetts B, Ljung K, McCulloch H, Leyser O (2014) Auxin and strigolactone signaling are required for modulation of Arabidopsis shoot branching by nitrogen supply. Plant Physiol 166(1):384–395. https://doi.org/10.1104/pp.114.242388
doi: 10.1104/pp.114.242388 pubmed: 25059707 pmcid: 4149722
Aguilar-Martinez JA, Poza-Carrion C, Cubas P (2007) Arabidopsis BRANCHED1 acts as an integrator of branching signals within axillary buds. Plant Cell 19(2):458–472. https://doi.org/10.1105/tpc.106.048934
doi: 10.1105/tpc.106.048934 pubmed: 17307924 pmcid: 1867329
Wang M, Le Moigne MA, Bertheloot J, Crespel L, Perez-Garcia MD, Oge L, Demotes-Mainard S, Hamama L, Daviere JM, Sakr S (2019) BRANCHED1: a key hub of shoot branching. Front Plant Sci 10:76. https://doi.org/10.3389/fpls.2019.00076
doi: 10.3389/fpls.2019.00076 pubmed: 30809235 pmcid: 6379311
Bennett T, Liang Y, Seale M, Ward S, Muller D, Leyser O (2016) Strigolactone regulates shoot development through a core signalling pathway. Biol Open 5(12):1806–1820. https://doi.org/10.1242/bio.021402
doi: 10.1242/bio.021402 pubmed: 27793831 pmcid: 5200909
Tarancón C, González-Grandío E, Oliveros JC, Nicolas M, Cubas P (2017) A conserved carbon starvation response underlies bud dormancy in woody and Herbaceous species. Front Plant Sci 8(788). https://doi.org/10.3389/fpls.2017.00788
Vogel JT, Walter MH, Giavalisco P, Lytovchenko A, Kohlen W, Charnikhova T, Simkin AJ, Goulet C, Strack D, Bouwmeester HJ, Fernie AR, Klee HJ (2010) SlCCD7 controls strigolactone biosynthesis, shoot branching and mycorrhiza-induced apocarotenoid formation in tomato. Plant J 61(2):300–311. https://doi.org/10.1111/j.1365-313X.2009.04056.x
doi: 10.1111/j.1365-313X.2009.04056.x pubmed: 19845881
Kohlen W, Charnikhova T, Liu Q, Bours R, Domagalska MA, Beguerie S, Verstappen F, Leyser O, Bouwmeester H, Ruyter-Spira C (2011) Strigolactones are transported through the xylem and play a key role in shoot architectural response to phosphate deficiency in nonarbuscular mycorrhizal host Arabidopsis. Plant Physiol 155(2):974–987. https://doi.org/10.1104/pp.110.164640
doi: 10.1104/pp.110.164640 pubmed: 21119045
Drummond RS, Janssen BJ, Luo Z, Oplaat C, Ledger SE, Wohlers MW, Snowden KC (2015) Environmental control of branching in petunia. Plant Physiol 168(2):735–751. https://doi.org/10.1104/pp.15.00486
doi: 10.1104/pp.15.00486 pubmed: 25911529 pmcid: 4453797
Vos J, Biemond H (1992) Effects of nitrogen on the development and growth of the potato plant. 1. Leaf appearance, expansion growth, life spans of leaves and stem branching. Ann Bot 70(1):27–35. https://doi.org/10.1093/oxfordjournals.aob.a088435
doi: 10.1093/oxfordjournals.aob.a088435
Salam BB, Barbier F, Danieli R, Teper-Bamnolker P, Ziv C, Spíchal L, Aruchamy K, Shnaider Y, Leibman D, Shaya F, Carmeli-Weissberg M, Gal-On A, Jiang J, Ori N, Beveridge C, Eshel D (2021) Sucrose promotes stem branching through cytokinin. Plant Physiol 185(4):1708–1721. https://doi.org/10.1093/plphys/kiab003
doi: 10.1093/plphys/kiab003 pubmed: 33793932 pmcid: 8133652
Salam BB, Malka SK, Zhu X, Gong H, Ziv C, Teper-Bamnolker P, Ori N, Jiang J, Eshel D (2017) Etiolated stem branching is a result of systemic signaling associated with sucrose level. Plant Physiol 175(2):734–745. https://doi.org/10.1104/pp.17.00995
doi: 10.1104/pp.17.00995 pubmed: 28860154 pmcid: 5619910
Struik PC, Geertsema J, Custers CHMG (1989) Effects of shoot, root and stolon temperature on the development of the potato (Solanum tuberosum L.) plant. III. Development of tubers. Potato Res 32(2):151–158. https://doi.org/10.1007/BF02358227
doi: 10.1007/BF02358227
Martín-Trillo M, Grandío EG, Serra F, Marcel F, Rodríguez-Buey ML, Schmitz G, Theres K, Bendahmane A, Dopazo H, Cubas P (2011) Role of tomato BRANCHED1-like genes in the control of shoot branching. Plant J 67(4):701–714. https://doi.org/10.1111/j.1365-313X.2011.04629.x
doi: 10.1111/j.1365-313X.2011.04629.x pubmed: 21554455

Auteurs

Ana Confraria (A)

Instituto Gulbenkian de Ciência, Oeiras, Portugal. aaugusto@igc.gulbenkian.pt.
GREEN-IT Bioresources for Sustainability, ITQB NOVA, Oeiras, Portugal. aaugusto@igc.gulbenkian.pt.

Aitor Muñoz-Gasca (A)

Plant Molecular Genetics Department, Centro Nacional de Biotecnología-CSIC, Campus Universidad Autónoma de Madrid, Madrid, Spain.

Liliana Ferreira (L)

Instituto Gulbenkian de Ciência, Oeiras, Portugal.
GREEN-IT Bioresources for Sustainability, ITQB NOVA, Oeiras, Portugal.

Elena Baena-González (E)

Instituto Gulbenkian de Ciência, Oeiras, Portugal.
GREEN-IT Bioresources for Sustainability, ITQB NOVA, Oeiras, Portugal.

Pilar Cubas (P)

Plant Molecular Genetics Department, Centro Nacional de Biotecnología-CSIC, Campus Universidad Autónoma de Madrid, Madrid, Spain.

Articles similaires

T-Lymphocytes, Regulatory Lung Neoplasms Proto-Oncogene Proteins p21(ras) Animals Humans

Pathogenic mitochondrial DNA mutations inhibit melanoma metastasis.

Spencer D Shelton, Sara House, Luiza Martins Nascentes Melo et al.
1.00
DNA, Mitochondrial Humans Melanoma Mutation Neoplasm Metastasis

Prevalence and implications of fragile X premutation screening in Thailand.

Areerat Hnoonual, Sunita Kaewfai, Chanin Limwongse et al.
1.00
Humans Fragile X Mental Retardation Protein Thailand Male Female
Humans Receptors, Antigen, T-Cell Proto-Oncogene Proteins p21(ras) Pancreatic Neoplasms T-Lymphocytes

Classifications MeSH