Optical Imaging Resources for Crop Phenotyping and Stress Detection.

Multispectral and hyperspectral sensing Plant stress Spectral imaging Thermal imaging

Journal

Methods in molecular biology (Clifton, N.J.)
ISSN: 1940-6029
Titre abrégé: Methods Mol Biol
Pays: United States
ID NLM: 9214969

Informations de publication

Date de publication:
2022
Historique:
entrez: 25 4 2022
pubmed: 26 4 2022
medline: 28 4 2022
Statut: ppublish

Résumé

With a rapidly increasing population, diminishing resource availability, and variation in environment, there is a need to change agricultural production to deliver long-term food security. To deliver such change, we need crops that are productive and tolerant to different stress factors. The traditional methods of obtaining data for phenotyping under field conditions, e.g., for morphological traits such as canopy structure or physiological traits such as plant stress-related traits, are laborious and time-consuming. A variety of imaging tools in the visible, spectral, and thermal infrared ranges allow data collection for quantitative studies of complex traits and crop monitoring. These tools can be used on crop phenotyping and monitoring platforms for high-throughput assessment of traits in order to better understand plant stress responses and the physiological pathways underlying yield. The applications and brief review of these imaging techniques are described and discussed in this chapter.

Identifiants

pubmed: 35467213
doi: 10.1007/978-1-0716-2297-1_18
doi:

Types de publication

Journal Article Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

255-265

Informations de copyright

© 2022. The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature.

Références

Tuberosa R (2012) Phenotyping for drought tolerance of crops in the genomics era. Front Physiol 3:347–347. https://doi.org/10.3389/fphys.2012.00347
doi: 10.3389/fphys.2012.00347 pubmed: 23049510 pmcid: 3446691
Cabrera-Bosquet L, Crossa J, von Zitzewitz J, Dolors Serret M, Luis Araus J (2012) High-throughput phenotyping and genomic selection: the frontiers of crop breeding converge. J Integr Plant Biol 54(5):312–320. https://doi.org/10.1111/j.1744-7909.2012.01116.x
doi: 10.1111/j.1744-7909.2012.01116.x pubmed: 22420640
Furbank RT, Tester M (2011) Phenomics - technologies to relieve the phenotyping bottleneck. Trends Plant Sci 16(12):635–644. https://doi.org/10.1016/j.tplants.2011.09.005
doi: 10.1016/j.tplants.2011.09.005 pubmed: 22074787
Araus JL, Cairns JE (2014) Field high-throughput phenotyping: the new crop breeding frontier. Trends Plant Sci 19(1):52–61. https://doi.org/10.1016/j.tplants.2013.09.008
doi: 10.1016/j.tplants.2013.09.008 pubmed: 24139902
de Jesus CF, Souter J, Bryan GJ, Compton LJ, Boonham N, Prashar A (2021) Development and validation of methodology for estimating potato canopy structure for field crop phenotyping and improved breeding. Front Plant Sci 12(139). https://doi.org/10.3389/fpls.2021.612843
Chaerle L, Van Der Straeten D (2000) Imaging techniques and the early detection of plant stress. Trends Plant Sci 5(11):495–501. https://doi.org/10.1016/S1360-1385(00)01781-7
doi: 10.1016/S1360-1385(00)01781-7 pubmed: 11077259
Wilkinson S, Davies WJ (2002) ABA-based chemical signalling: the co-ordination of responses to stress in plants. Plant Cell Environ 25(2):195–210. https://doi.org/10.1046/j.0016-8025.2001.00824.x
doi: 10.1046/j.0016-8025.2001.00824.x pubmed: 11841663
Jones HG (2004) Irrigation scheduling: advantages and pitfalls of plant-based methods. J Exp Bot 55(407):2427–2436. https://doi.org/10.1093/jxb/erh213
doi: 10.1093/jxb/erh213 pubmed: 15286143
Jones HG (1999) Use of infrared thermometry for estimation of stomatal conductance as a possible aid to irrigation scheduling. Agric For Meteorol 95(3):139–149. https://doi.org/10.1016/s0168-1923(99)00030-1
doi: 10.1016/s0168-1923(99)00030-1
Amani I, Fischer RA, Reynolds MF (1996) Evaluation of canopy temperature as a screening tool for heat tolerance in spring wheat. J Agron Crop Sci 176:119–129
doi: 10.1111/j.1439-037X.1996.tb00454.x
Lindenthal M, Steiner U, Dehne HW, Oerke EC (2005) Effect of downy mildew development on transpiration of cucumber leaves visualized by digital infrared thermography. Phytopathology 95(3):233–240
doi: 10.1094/PHYTO-95-0233
Stoll M, Schultz HR, Baecker G, Berkelmann-Loehnertz B (2008) Early pathogen detection under different water status and the assessment of spray application in vineyards through the use of thermal imagery. Precis Agric 9(6):407–417. https://doi.org/10.1007/s11119-008-9084-y
doi: 10.1007/s11119-008-9084-y
Jones HG (2004) Application of thermal imaging and infrared sensing in plant physiology and ecophysiology. In: Callow JA (ed) Advances in botanical research incorporating advances in plant pathology, vol 41. Advances in Botanical Research, pp 107–163
doi: 10.1016/S0065-2296(04)41003-9
Pinter PJ, Stanghellini ME, Reginato RJ, Idso SB, Jenkins AD, Jackson RD (1979) Remote detection of biological stresses in plants with infrared thermography. Science 205(4406):585–586. https://doi.org/10.1126/science.205.4406.585
doi: 10.1126/science.205.4406.585 pubmed: 17729682
Melandri G, Prashar A, McCouch SR, Gvd L, Jones HG, Kadam NN, Jagadish SVK, Bouwmeester H, Ruyter-Spira C (2019) Association mapping and genetic dissection of drought-induced canopy temperature differences in rice. J Exp Bot 71:1614–1627
doi: 10.1093/jxb/erz527
Prashar A, Yildiz J, McNicol JW, Bryan GJ, Jones HG (2013) Infra-red thermography for high throughput field phenotyping in Solanum tuberosum. PLoS One 8:1–9. https://doi.org/10.1371/journal.pone.0065816
doi: 10.1371/journal.pone.0065816
Prashar A, Jones HG (2014) Infra-red thermography as a high-throughput tool for field phenotyping. Agronomy 4:397–417. https://doi.org/10.3390/agronomy4030397
doi: 10.3390/agronomy4030397
Vogt S, Allen S, Bigelow B, Bresee L, Brown W, Cantrall T, Conrad A, Couture M, Delaney C, Epps H, Hilyard D, Hilyard D, Horn E, Jern N, Kanto D, Keane M, Kibrick R, Lewis J, Osborne J, Pardeilhan G, Pfister T, Ricketts T, Robinson L, Stover R, Tucker D, Ward J, Wei M (1994) HIRES: the high-resolution echelle spectrometer on the keck 10-m telescope, 1994 Symposium on astronomical telescopes and instrumentation for the 21st century, vol 2198. SPIE
Burger J, Gowen A (2011) Data handling in hyperspectral image analysis. Chemom Intell Lab Syst 108(1):13–22. https://doi.org/10.1016/j.chemolab.2011.04.001
doi: 10.1016/j.chemolab.2011.04.001
Tripodi P, Massa D, Venezia A, Cardi T (2018) Sensing technologies for precision phenotyping in vegetable crops: current status and future challenges. Agronomy-Basel 8(4). https://doi.org/10.3390/agronomy8040057
Mahlein A-K (2016) Plant disease detection by imaging sensors – parallels and specific demands for precision agriculture and plant phenotyping. Plant Dis 100(2):241–251. https://doi.org/10.1094/pdis-03-15-0340-fe
doi: 10.1094/pdis-03-15-0340-fe pubmed: 30694129
Shakoor N, Lee S, Mockler TC (2017) High throughput phenotyping to accelerate crop breeding and monitoring of diseases in the field. Curr Opin Plant Biol 38:184–192. https://doi.org/10.1016/j.pbi.2017.05.006
doi: 10.1016/j.pbi.2017.05.006 pubmed: 28738313
Khurana SC, McLaren JS (1982) The influence of leaf area, light interception and season on potato growth and yield. Potato Res 25:329–342. https://doi.org/10.1007/BF02357290
doi: 10.1007/BF02357290
Haverkort AJ, Franke AC, Steyn JM, Pronk AA, Caldiz DO, Kooman PL (2015) A Robust Potato Model: LINTUL-POTATO-DSS. Potato Res 58:313–327. https://doi.org/10.1007/s11540-015-9303-7
doi: 10.1007/s11540-015-9303-7
Raymundo R, Asseng S, Prassad R, Kleinwechter U, Concha J, Condori B, Bowen W, Wolf J, Olesen JE, Dong Q, Zotarelli L, Gastelo M, Alva A, Travasso M, Quiroz R, Arora V, Graham W, Porter C (2017) Performance of the SUBSTOR-potato model across contrasting growing conditions. Field Crop Res 202:57–76
doi: 10.1016/j.fcr.2016.04.012
Boyd NS, Gordon R, Martin RC (2002) Relationship between leaf area index and ground cover in potato under different management conditions. Potato Res 45:117–129. https://doi.org/10.1007/BF02736107
doi: 10.1007/BF02736107
Sugiura R, Tsuda S, Tamiya S, Itoh A, Nishiwaki K, Murakami N, Shibuya Y, Hirafuji M, Nuske S (2016) Field phenotyping system for the assessment of potato late blight resistance using RGB imagery from an unmanned aerial vehicle. Biosyst Eng 148:1–10. https://doi.org/10.1016/j.biosystemseng.2016.04.010
doi: 10.1016/j.biosystemseng.2016.04.010
Oerke E-C, Mahlein A-K, Steiner U (2014) Proximal sensing of plant diseases. In: Gullino ML, Bonants PJM (eds) Detection and diagnostics of plant pathogens. Springer, Dordrecht, pp 55–68. https://doi.org/10.1007/978-94-017-9020-8_4
doi: 10.1007/978-94-017-9020-8_4
Veys C, Chatziavgerinos F, AlSuwaidi A, Hibbert J, Hansen M, Bernotas G, Smith M, Yin H, Rolfe S, Grieve B (2019) Multispectral imaging for presymptomatic analysis of light leaf spot in oilseed rape. Plant Methods 15(1):4. https://doi.org/10.1186/s13007-019-0389-9
doi: 10.1186/s13007-019-0389-9 pubmed: 30697329 pmcid: 6345015
Raji S, Subhash N, Ravi V, Saravanan R, Mohanan C, MakeshKumar T, Nita S (2016) Detection and classification of mosaic virus disease in cassava plants by proximal sensing of photochemical reflectance index. J Indian Soc Remote Sens 44(6):875–883. https://doi.org/10.1007/s12524-016-0565-6
doi: 10.1007/s12524-016-0565-6
Adam E, Deng H, Odindi J, Abdel-Rahman EM, Mutanga O (2017) Detecting the early stage of Phaeosphaeria leaf spot infestations in maize crop using in situ hyperspectral data and guided regularized random Forest algorithm. J Spectrosc 2017. https://doi.org/10.1155/2017/6961387
Devadas R, Devadas DW, Lamb D, Lamb S, Backhouse S, Simpfendorfer S (2015) Sequential application of hyperspectral indices for delineation of stripe rust infection and nitrogen deficiency in wheat. Precis Agric 16(5). https://doi.org/10.1007/s11119-015-9390-0
Xie Y, Sha Z, Yu M (2008) Remote sensing imagery in vegetation mapping: a review. J Plant Ecol 1(1):9–23. https://doi.org/10.1093/jpe/rtm005
doi: 10.1093/jpe/rtm005
Zaman-Allah M, Vergara O, Araus JL, Tarekegne A, Magorokosho C, Zarco-Tejada PJ, Hornero A, Albà AH, Das B, Craufurd P, Olsen M, Prasanna BM, Cairns J (2015) Unmanned aerial platform-based multi-spectral imaging for field phenotyping of maize. Plant Methods 11(1):35. https://doi.org/10.1186/s13007-015-0078-2
doi: 10.1186/s13007-015-0078-2 pubmed: 26106438 pmcid: 4477614
Williams D, Britten A, McCallum S, Jones H, Aitkenhead M, Karley A, Loades K, Prashar A, Graham J (2017) A method for automatic segmentation and splitting of hyperspectral images of raspberry plants collected in field conditions. Plant Methods 13:1–12. https://doi.org/10.1186/s13007-017-0226-y
doi: 10.1186/s13007-017-0226-y
Adão T, Hruška J, Pádua L, Bessa J, Peres E, Morais R, Sousa JJ (2017) Hyperspectral imaging: a review on UAV-based sensors, data processing and applications for agriculture and forestry. Remote Sens 9(11):1110
doi: 10.3390/rs9111110
Gowen AA, O’Donnell CP, Cullen PJ, Downey G, Frias JM (2007) Hyperspectral imaging – an emerging process analytical tool for food quality and safety control. Trends Food Sci Technol 18(12):590–598. https://doi.org/10.1016/j.tifs.2007.06.001
doi: 10.1016/j.tifs.2007.06.001
Jones HG, Serraj R, Loveys BR, Xiong L, Wheaton A, Price AH (2009) Thermal infrared imaging of crop canopies for the remote diagnosis and quantification of plant responses to water stress in the field. Funct Plant Biol 36:978–989
doi: 10.1071/FP09123
Merlot S, Mustilli AC, Genty B, North H, Lefebvre V, Sotta B, Vavasseur A, Giraudat J (2002) Use of infrared thermal imaging to isolate Arabidopsis mutants defective in stomatal regulation. Plant J 30(5):601–609. https://doi.org/10.1046/j.1365-313X.2002.01322.x
doi: 10.1046/j.1365-313X.2002.01322.x pubmed: 12047634
El-Shikha DM, Waller P, Hunsaker D, Clarke T, Barnes E (2007) Ground-based remote sensing for assessing water and nitrogen status of broccoli. Agric Water Manag 92(3):183–193. https://doi.org/10.1016/j.agwat.2007.05.020
doi: 10.1016/j.agwat.2007.05.020
Busemeyer L, Mentrup D, Möller K, Wunder E, Alheit K, Hahn V, Maurer HP, Reif JC, Würschum T, Müller J, Rahe F, Ruckelshausen A (2013) BreedVision — a multi-sensor platform for non-destructive field-based phenotyping in plant breeding. Sensors 13(3):2830–2847
doi: 10.3390/s130302830

Auteurs

Phatchareeya Waiphara (P)

School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne, UK.

Cyril Bourgenot (C)

Precision Optics Laboratory, Durham University, Sedgefield, UK.

Lindsey J Compton (LJ)

School of Biosciences, University of Birmingham, Birmingham, UK.

Ankush Prashar (A)

School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne, UK. Ankush.prashar@newcastle.ac.uk.

Articles similaires

Animals Natural Killer T-Cells Mice Adipose Tissue Lipid Metabolism
Genome, Bacterial Virulence Phylogeny Genomics Plant Diseases
Zea mays Triticum China Seasons Crops, Agricultural
Ethiopia Conservation of Natural Resources Environmental Monitoring Soil Soil Erosion

Classifications MeSH