TRAF3 alterations are frequent in del-3'IGH chronic lymphocytic leukemia patients and define a specific subgroup with adverse clinical features.


Journal

American journal of hematology
ISSN: 1096-8652
Titre abrégé: Am J Hematol
Pays: United States
ID NLM: 7610369

Informations de publication

Date de publication:
07 2022
Historique:
revised: 11 04 2022
received: 02 02 2022
accepted: 17 04 2022
pubmed: 27 4 2022
medline: 16 6 2022
entrez: 26 4 2022
Statut: ppublish

Résumé

Interstitial 14q32 deletions involving IGH gene are infrequent events in chronic lymphocytic leukemia (CLL), affecting less than 5% of patients. To date, little is known about their clinical impact and molecular underpinnings, and its mutational landscape is currently unknown. In this work, a total of 871 CLLs were tested for the IGH break-apart probe, and 54 (6.2%) had a 300 kb deletion of 3'IGH (del-3'IGH CLLs), which contributed to a shorter time to first treatment (TFT). The mutational analysis by next-generation sequencing of 317 untreated CLLs (54 del-3'IGH and 263 as the control group) showed high mutational frequencies of NOTCH1 (30%), ATM (20%), genes involved in the RAS signaling pathway (BRAF, KRAS, NRAS, and MAP2K1) (15%), and TRAF3 (13%) within del-3'IGH CLLs. Notably, the incidence of TRAF3 mutations was significantly higher in del-3'IGH CLLs than in the control group (p < .001). Copy number analysis also revealed that TRAF3 loss was highly enriched in CLLs with 14q deletion (p < .001), indicating a complete biallelic inactivation of this gene through deletion and mutation. Interestingly, the presence of mutations in the aforementioned genes negatively refined the prognosis of del-3'IGH CLLs in terms of overall survival (NOTCH1, ATM, and RAS signaling pathway genes) and TFT (TRAF3). Furthermore, TRAF3 biallelic inactivation constituted an independent risk factor for TFT in the entire CLL cohort. Altogether, our work demonstrates the distinct genetic landscape of del-3'IGH CLL with multiple molecular pathways affected, characterized by a TRAF3 biallelic inactivation that contributes to a marked poor outcome in this subgroup of patients.

Identifiants

pubmed: 35472012
doi: 10.1002/ajh.26578
doi:

Substances chimiques

TNF Receptor-Associated Factor 3 0
TRAF3 protein, human 0

Types de publication

Journal Article Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

903-914

Informations de copyright

© 2022 Wiley Periodicals LLC.

Références

Nowakowski GS, Dewald GW, Hoyer JD, et al. Interphase fluorescence in situ hybridization with an IGH probe is important in the evaluation of patients with a clinical diagnosis of chronic lymphocytic leukaemia. Br J Haematol. 2005;130(1):36-42.
Berkova A, Pavlistova L, Babicka L, et al. Combined molecular biological and molecular cytogenetic analysis of genomic changes in 146 patients with B-cell chronic lymphocytic leukemia. Neoplasma. 2008;55(5):400-408.
Lu G, Kong Y, Yue C. Genetic and immunophenotypic profile of IGH@ rearrangement detected by fluorescence in situ hybridization in 149 cases of B-cell chronic lymphocytic leukemia. Cancer Genet Cytogenet. 2010;196(1):56-63.
Pospisilova H, Baens M, Michaux L, et al. Interstitial del(14)(q) involving IGH: a novel recurrent aberration in B-NHL. Leukemia. 2007;21(9):2079-2083.
Reindl L, Bacher U, Dicker F, et al. Biological and clinical characterization of recurrent 14q deletions in CLL and other mature B-cell neoplasms. Br J Haematol. 2010;151(1):25-36.
Mitelman F, Johanson B, Mertens F. Mitelman Database of Chromosome Aberrations in Cancer. 2014. http://cgap.nci.nih.gov/Chromosomes/Mitelman.
Damle RN, Wasil T, Fais F, et al. Ig V gene mutation status and CD38 expression as novel prognostic indicators in chronic lymphocytic leukemia. Blood. 1999;94(6):1840-1847.
Hamblin TJ, Davis Z, Gardiner A, Oscier DG, Stevenson FK. Unmutated Ig V(H) genes are associated with a more aggressive form of chronic lymphocytic leukemia. Blood. 1999;94(6):1848-1854.
Mayr C, Speicher MR, Kofler DM, et al. Chromosomal translocations are associated with poor prognosis in chronic lymphocytic leukemia. Blood. 2006;107(2):742-751.
Van Den Neste E, Robin V, Francart J, et al. Chromosomal translocations independently predict treatment failure, treatment-free survival and overall survival in B-cell chronic lymphocytic leukemia patients treated with cladribine. Leukemia. 2007;21(8):1715-1722.
Cavazzini F, Hernandez JA, Gozzetti A, et al. Chromosome 14q32 translocations involving the immunoglobulin heavy chain locus in chronic lymphocytic leukaemia identify a disease subset with poor prognosis. Br J Haematol. 2008;142(4):529-537.
Jimenez-Zepeda VH, Chng WJ, Schop RF, et al. Recurrent chromosome abnormalities define nonoverlapping unique subgroups of tumors in patients with chronic lymphocytic leukemia and known karyotypic abnormalities. Clin Lymphoma Myeloma Leuk. 2013;13(4):467-476.
Pérez-Carretero C, Hernández-Sánchez M, González T, et al. Chronic lymphocytic leukemia patients with IGH translocations are characterized by a distinct genetic landscape with prognostic implications. Int J Cancer. 2020;147(10):2780-2792.
Davids MS, Vartanov A, Werner L, Neuberg D, Dal Cin P, Brown JR. Controversial fluorescence in situ hybridization cytogenetic abnormalities in chronic lymphocytic leukaemia: new insights from a large cohort. Br J Haematol. 2015;170(5):694-703.
Hwang Y, Lee JY, Mun YC, Seong CM, Chung WS, Huh J. Various patterns of IgH deletion identified by FISH using combined IgH and IgH/CCND1 probes in multiple myeloma and chronic lymphocytic leukemia. Int J Lab Hematol. 2011;33(3):299-304.
Leeksma AC, Baliakas P, Moysiadis T, et al. Genomic arrays identify high-risk chronic lymphocytic leukemia with genomic complexity: a multi-center study. Haematologica. 2021;106(1):87-97.
Cosson A, Chapiro E, Belhouachi N, et al. 14q deletions are associated with trisomy 12, NOTCH1 mutations and unmutated IGHV genes in chronic lymphocytic leukemia and small lymphocytic lymphoma. Genes Chromosomes Cancer. 2014;53(8):657-666.
Wlodarska I, Matthews C, Veyt E, et al. Telomeric IGH losses detectable by fluorescence in situ hybridization in chronic lymphocytic leukemia reflect somatic VH recombination events. J Mol Diagn. 2007;9(1):47-54.
Quintero-Rivera F, Nooraie F, Rao PN. Frequency of 5'IGH deletions in B-cell chronic lymphocytic leukemia. Cancer Genet Cytogenet. 2009;190(1):33-39.
Nagel I, Bug S, Tönnies H, et al. Biallelic inactivation of TRAF3 in a subset of B-cell lymphomas with interstitial del(14)(q24.1q32.33). Leukemia. 2009;23(11):2153-2155.
Landau DA, Tausch E, Taylor-Weiner AN, et al. Mutations driving CLL and their evolution in progression and relapse. Nature. 2015;526(7574):525-530.
Hallek M, Cheson BD, Catovsky D, et al. iwCLL guidelines for diagnosis, indications for treatment, response assessment, and supportive management of CLL. Blood. 2018;131(25):2745-2760.
Group IC-Iw. An international prognostic index for patients with chronic lymphocytic leukaemia (CLL-IPI): a meta-analysis of individual patient data. Lancet Oncol. 2016;17(6):779-790.
Condoluci A, Terzi di Bergamo L, Langerbeins P, et al. International prognostic score for asymptomatic early-stage chronic lymphocytic leukemia. Blood. 2020;135(21):1859-1869.
Puente XS, Beà S, Valdés-Mas R, et al. Non-coding recurrent mutations in chronic lymphocytic leukaemia. Nature. 2015;526(7574):519-524.
González MB, Hernández JM, García JL, et al. The value of fluorescence in situ hybridization for the detection of 11q in multiple myeloma. Haematologica. 2004;89(10):1213-1218.
Quijada-Álamo M, Hernández-Sánchez M, Robledo C, et al. Next-generation sequencing and FISH studies reveal the appearance of gene mutations and chromosomal abnormalities in hematopoietic progenitors in chronic lymphocytic leukemia. J Hematol Oncol. 2017;10(1):83.
Hernández-Sánchez M, Rodríguez-Vicente AE, y Marín IG, et al. DNA damage response-related alterations define the genetic background of patients with chronic lymphocytic leukemia and chromosomal gains. Exp Hematol. 2019;72:9-13.
Quijada-Álamo M, Hernández-Sánchez M, Alonso-Pérez V, et al. CRISPR/Cas9-generated models uncover therapeutic vulnerabilities of del(11q) CLL cells to dual BCR and PARP inhibition. Leukemia. 2020;34:1599-1612.
Quijada-Álamo M, Pérez-Carretero C, Hernández-Sánchez M, et al. Dissecting the role of TP53 alterations in del(11q) chronic lymphocytic leukemia. Clin Transl Med. 2021;11(2):e304.
Feng Y, Chen D, Wang GL, Zhang VW, Wong LJ. Improved molecular diagnosis by the detection of exonic deletions with target gene capture and deep sequencing. Genet Med. 2015;17(2):99-107.
Bastida JM, Lozano ML, Benito R, et al. Introducing high-throughput sequencing into mainstream genetic diagnosis practice in inherited platelet disorders. Haematologica. 2018;103(1):148-162.
Quijada-Álamo M, Hernández-Sánchez M, Rodríguez-Vicente AE, et al. Biological significance of monoallelic and biallelic BIRC3 loss in del(11q) chronic lymphocytic leukemia progression. Blood Cancer J. 2021;11(7):127.
Parker H, Rose-Zerilli MJ, Parker A, et al. 13q deletion anatomy and disease progression in patients with chronic lymphocytic leukemia. Leukemia. 2011;25(3):489-497.
Roos-Weil D, Nguyen-Khac F, Chevret S, et al. Mutational and cytogenetic analyses of 188 CLL patients with trisomy 12: a retrospective study from the French Innovative Leukemia Organization (FILO) working group. Genes Chromosomes Cancer. 2018;57(11):533-540.
Martín-Subero JI, Ibbotson R, Klapper W, et al. A comprehensive genetic and histopathologic analysis identifies two subgroups of B-cell malignancies carrying a t(14;19)(q32;q13) or variant BCL3-translocation. Leukemia. 2007;21(7):1532-1544.
Chapiro E, Radford-Weiss I, Bastard C, et al. The most frequent t(14;19)(q32;q13)-positive B-cell malignancy corresponds to an aggressive subgroup of atypical chronic lymphocytic leukemia. Leukemia. 2008;22(11):2123-2127.
Nguyen-Khac F, Chapiro E, Lesty C, et al. Specific chromosomal IG translocations have different prognoses in chronic lymphocytic leukemia. Am J Blood Res. 2011;1(1):13-21.
Fang H, Reichard KK, Rabe KG, et al. IGH translocations in chronic lymphocytic leukemia: clinicopathologic features and clinical outcomes. Am J Hematol. 2019;94(3):338-345.
Harris RA, Stevens JM, Pickering DL, et al. Frequency, variations, and prognostic implications of chromosome 14q32 deletions in chronic lymphocytic leukemia. Leuk Res. 2021;110:106665.
Pérez-Carretero C, González-Gascón-Y-Marín I, Rodríguez-Vicente AE, et al. The evolving landscape of chronic lymphocytic leukemia on diagnosis, prognosis and treatment. Diagnostics. 2021;11(5):853.
López C, Delgado J, Costa D, et al. Different distribution of NOTCH1 mutations in chronic lymphocytic leukemia with isolated trisomy 12 or associated with other chromosomal alterations. Genes Chromosomes Cancer. 2012;51(9):881-889.
Del Giudice I, Rossi D, Chiaretti S, et al. NOTCH1 mutations in +12 chronic lymphocytic leukemia (CLL) confer an unfavorable prognosis, induce a distinctive transcriptional profiling and refine the intermediate prognosis of +12 CLL. Haematologica. 2012;97(3):437-441.
Balatti V, Bottoni A, Palamarchuk A, et al. NOTCH1 mutations in CLL associated with trisomy 12. Blood. 2012;119(2):329-331.
Weissmann S, Roller A, Jeromin S, et al. Prognostic impact and landscape of NOTCH1 mutations in chronic lymphocytic leukemia (CLL): a study on 852 patients. Leukemia. 2013;27(12):2393-2396.
Giménez N, Martínez-Trillos A, Montraveta A, et al. Mutations in the RAS-BRAF-MAPK-ERK pathway define a specific subgroup of patients with adverse clinical features and provide new therapeutic options in chronic lymphocytic leukemia. Haematologica. 2019;104(3):576-586.
Vendramini E, Bomben R, Pozzo F, et al. KRAS, NRAS, and BRAF mutations are highly enriched in trisomy 12 chronic lymphocytic leukemia and are associated with shorter treatment-free survival. Leukemia. 2019;33(8):2111-2115.
Blakemore SJ, Clifford R, Parker H, et al. Clinical significance of TP53, BIRC3, ATM and MAPK-ERK genes in chronic lymphocytic leukaemia: data from the randomised UKLRF CLL4 trial. Leukemia. 2020;34(7):1760-1774.
Moore CR, Edwards SK, Xie P. Targeting TRAF3 downstream signaling pathways in B cell neoplasms. J Cancer Sci Ther. 2015;7(2):67-74.
Moore CR, Liu Y, Shao C, Covey LR, Morse HC, Xie P. Specific deletion of TRAF3 in B lymphocytes leads to B-lymphoma development in mice. Leukemia. 2012;26(5):1122-1127.
Bushell KR, Kim Y, Chan FC, et al. Genetic inactivation of TRAF3 in canine and human B-cell lymphoma. Blood. 2015;125(6):999-1005.
Diop F, Moia R, Favini C, et al. Biological and clinical implications of. Haematologica. 2020;105(2):448-456.
Malcikova J, Smardova J, Rocnova L, et al. Monoallelic and biallelic inactivation of TP53 gene in chronic lymphocytic leukemia: selection, impact on survival, and response to DNA damage. Blood. 2009;114(26):5307-5314.
Zenz T, Vollmer D, Trbusek M, et al. TP53 mutation profile in chronic lymphocytic leukemia: evidence for a disease specific profile from a comprehensive analysis of 268 mutations. Leukemia. 2010;24(12):2072-2079.
Yu L, Kim HT, Kasar S, et al. Survival of Del17p CLL depends on genomic complexity and somatic mutation. Clin Cancer Res. 2017;23(3):735-745.
Campo E, Cymbalista F, Ghia P, et al. Aberrations in chronic lymphocytic leukemia: an overview of the clinical implications of improved diagnostics. Haematologica. 2018;103(12):1956-1968.
Skowronska A, Parker A, Ahmed G, et al. Biallelic ATM inactivation significantly reduces survival in patients treated on the United Kingdom leukemia research fund chronic lymphocytic leukemia 4 trial. J Clin Oncol. 2012;30(36):4524-4532.
Lozano-Santos C, García-Vela JA, Pérez-Sanz N, et al. Biallelic ATM alterations detected at diagnosis identify a subset of treatment-naïve chronic lymphocytic leukemia patients with reduced overall survival similar to patients with p53 deletion. Leuk Lymphoma. 2017;58(4):859-865.
González-Gascón-Y-Marín I, Muñoz-Novas C, Rodríguez-Vicente AE, et al. From biomarkers to models in the changing landscape of chronic lymphocytic leukemia: evolve or become extinct. Cancers. 2021;13(8):1782.

Auteurs

Claudia Pérez-Carretero (C)

Universidad de Salamanca, IBSAL, IBMCC- Centro de Investigación del Cáncer (USAL-CSIC), Salamanca, Spain.
Servicio de Hematología, Hospital Universitario de Salamanca, Salamanca, Spain.

María Hernández-Sánchez (M)

Universidad de Salamanca, IBSAL, IBMCC- Centro de Investigación del Cáncer (USAL-CSIC), Salamanca, Spain.
Servicio de Hematología, Hospital Universitario de Salamanca, Salamanca, Spain.

Teresa González (T)

Universidad de Salamanca, IBSAL, IBMCC- Centro de Investigación del Cáncer (USAL-CSIC), Salamanca, Spain.
Servicio de Hematología, Hospital Universitario de Salamanca, Salamanca, Spain.

Miguel Quijada-Álamo (M)

Universidad de Salamanca, IBSAL, IBMCC- Centro de Investigación del Cáncer (USAL-CSIC), Salamanca, Spain.
Servicio de Hematología, Hospital Universitario de Salamanca, Salamanca, Spain.

Marta Martín-Izquierdo (M)

Universidad de Salamanca, IBSAL, IBMCC- Centro de Investigación del Cáncer (USAL-CSIC), Salamanca, Spain.
Servicio de Hematología, Hospital Universitario de Salamanca, Salamanca, Spain.

Sandra Santos-Mínguez (S)

Universidad de Salamanca, IBSAL, IBMCC- Centro de Investigación del Cáncer (USAL-CSIC), Salamanca, Spain.
Servicio de Hematología, Hospital Universitario de Salamanca, Salamanca, Spain.

Cristina Miguel-García (C)

Universidad de Salamanca, IBSAL, IBMCC- Centro de Investigación del Cáncer (USAL-CSIC), Salamanca, Spain.
Servicio de Hematología, Hospital Universitario de Salamanca, Salamanca, Spain.

María-Jesús Vidal (MJ)

Servicio de Hematología, Hospital Universitario, León, Spain.

Alfonso García-De-Coca (A)

Servicio de Hematología, Hospital Clínico, Valladolid, Spain.

Josefina Galende (J)

Servicio de Hematología, Hospital El Bierzo, Ponferrada, Spain.

Emilia Pardal (E)

Servicio de Hematología, Hospital Virgen del Puerto, Plasencia, Spain.

Carlos Aguilar (C)

Servicio de Hematología, Complejo Hospitalario de Soria, Soria, Spain.

Manuel Vargas-Pabón (M)

Servicio de Hematología, Hospital Jarrio, Asturias, Spain.

Julio Dávila (J)

Servicio de Hematología, Hospital Nuestra Señora de Sonsoles, Ávila, Spain.

Isabel Gascón-Y-Marín (I)

Servicio de Hematología, Hospital Universitario Infanta Leonor, Universidad Complutense, Madrid, Spain.

José-Ángel Hernández-Rivas (JÁ)

Servicio de Hematología, Hospital Universitario Infanta Leonor, Universidad Complutense, Madrid, Spain.

Rocío Benito (R)

Universidad de Salamanca, IBSAL, IBMCC- Centro de Investigación del Cáncer (USAL-CSIC), Salamanca, Spain.
Servicio de Hematología, Hospital Universitario de Salamanca, Salamanca, Spain.

Jesús-María Hernández-Rivas (JM)

Universidad de Salamanca, IBSAL, IBMCC- Centro de Investigación del Cáncer (USAL-CSIC), Salamanca, Spain.
Servicio de Hematología, Hospital Universitario de Salamanca, Salamanca, Spain.

Ana-Eugenia Rodríguez-Vicente (AE)

Universidad de Salamanca, IBSAL, IBMCC- Centro de Investigación del Cáncer (USAL-CSIC), Salamanca, Spain.
Servicio de Hematología, Hospital Universitario de Salamanca, Salamanca, Spain.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH