Technology Overview of Fast Pyrolysis of Lignin: Current State and Potential for Scale-Up.

biomass biorefinery fast pyrolysis lignin sustainable chemistry

Journal

ChemSusChem
ISSN: 1864-564X
Titre abrégé: ChemSusChem
Pays: Germany
ID NLM: 101319536

Informations de publication

Date de publication:
21 Jul 2022
Historique:
received: 16 02 2022
pubmed: 28 4 2022
medline: 23 7 2022
entrez: 27 4 2022
Statut: ppublish

Résumé

Lignin is an abundant natural polymer obtained from lignocellulosic biomass and rich in aromatic substructures. When efficiently depolymerized, it has great potential in the production of value-added chemicals. Fast pyrolysis is a promising depolymerization method, but current studies focus mainly on small quantities of lignin. In this Review, to determine the potential for upscaling, systems used in the most relevant unit operations of fast pyrolysis of lignin are evaluated. Fluidized-bed reactors have the most potential. It would be beneficial to combine them with the following: slug injectors for feeding, hot particle filters, cyclones, and fractional condensation for product separation and recovery. Moreover, upgrading lignin pyrolysis oil would allow the necessary quality parameters for particular applications to be reached.

Identifiants

pubmed: 35474609
doi: 10.1002/cssc.202200343
pmc: PMC9400966
doi:

Substances chimiques

Biofuels 0
Lignin 9005-53-2

Types de publication

Journal Article Review

Langues

eng

Sous-ensembles de citation

IM

Pagination

e202200343

Subventions

Organisme : Ministry of Science, Technology, and Telecommunications of Costa Rica
Organisme : Costa Rica Institute of Technology

Informations de copyright

© 2022 The Authors. ChemSusChem published by Wiley-VCH GmbH.

Références

Bioresour Technol. 2020 Feb;297:122480
pubmed: 31812912
Bioresour Technol. 2019 Nov;291:121878
pubmed: 31377047
Curr Opin Biotechnol. 2019 Apr;56:240-249
pubmed: 30921563
Bioresour Technol. 2017 Apr;229:160-168
pubmed: 28110233
ChemSusChem. 2020 Sep 7;13(17):4284-4295
pubmed: 32672385
Angew Chem Int Ed Engl. 2020 Jul 13;59(29):11704-11716
pubmed: 32017337
ChemSusChem. 2016 May 23;9(10):1134-45
pubmed: 27079742
ChemSusChem. 2016 Sep 8;9(17):2397-403
pubmed: 27486717
Bioresour Technol. 2019 Jan;271:462-472
pubmed: 30270050
Science. 2012 Aug 10;337(6095):695-9
pubmed: 22879509
Chimia (Aarau). 2015;69(10):597-602
pubmed: 26598403
Angew Chem Int Ed Engl. 2021 Jul 19;60(30):16399-16403
pubmed: 33961338
Plant Physiol. 2010 Jul;153(3):895-905
pubmed: 20472751
Bioresour Technol. 2014 Jun;162:142-7
pubmed: 24747393
Bioresour Technol. 2020 Feb;298:122432
pubmed: 31767425
Sci Adv. 2018 Sep 28;4(9):eaau2968
pubmed: 30276267
Chem Soc Rev. 2018 Feb 5;47(3):852-908
pubmed: 29318245
Bioresour Technol. 2020 Apr;301:122784
pubmed: 31980318
Chem Sci. 2021 Feb 18;12(9):3161-3169
pubmed: 34164083
Science. 2014 May 16;344(6185):1246843
pubmed: 24833396
Bioresour Technol. 2017 Oct;241:142-151
pubmed: 28554100
Chem Soc Rev. 2015 Aug 21;44(16):5821-35
pubmed: 25907306
Bioresour Technol. 2017 Oct;241:1118-1126
pubmed: 28578807
Int J Biol Macromol. 2020 Nov 1;162:985-1024
pubmed: 32592780
Science. 2006 Jan 27;311(5760):484-9
pubmed: 16439654
ChemSusChem. 2020 Sep 7;13(17):4296-4317
pubmed: 32662564
Angew Chem Int Ed Engl. 2016 Jul 11;55(29):8164-215
pubmed: 27311348
ChemSusChem. 2011 Nov 18;4(11):1629-36
pubmed: 21948630
Bioresour Technol. 2019 Jan;271:449-461
pubmed: 30266464
Bioresour Technol. 2018 Jan;247:851-858
pubmed: 30060422
ChemSusChem. 2022 Jul 21;15(14):e202200343
pubmed: 35474609
Bioresour Technol. 2002 May;83(1):37-46
pubmed: 12058829
Bioresour Technol. 2015;189:7-14
pubmed: 25863324
Curr Opin Biotechnol. 2019 Apr;56:230-239
pubmed: 30913460
Sci Adv. 2017 May 19;3(5):e1603301
pubmed: 28560350
Bioresour Technol. 2017 Apr;230:112-121
pubmed: 28167357
Chem Soc Rev. 2012 Feb 21;41(4):1538-58
pubmed: 21909591
Bioresour Technol. 2014 Feb;154:101-8
pubmed: 24384316
Science. 2007 Nov 23;318(5854):1250-1
pubmed: 18033870
Chem Rev. 2010 Jun 9;110(6):3552-99
pubmed: 20218547

Auteurs

Amrita Singh-Morgan (A)

Institute for Chemical and Bioengineering, Department of Chemistry and Applied Biosciences, ETH Zurich HCI E 127, Vladimir-Prelog-Weg 1, 8093, Zurich, Switzerland.
School of Chemistry, University of Edinburgh, Edinburgh EH9 3FJ, United Kingdom.

Allen Puente-Urbina (A)

Institute for Chemical and Bioengineering, Department of Chemistry and Applied Biosciences, ETH Zurich HCI E 127, Vladimir-Prelog-Weg 1, 8093, Zurich, Switzerland.

Jeroen A van Bokhoven (JA)

Institute for Chemical and Bioengineering, Department of Chemistry and Applied Biosciences, ETH Zurich HCI E 127, Vladimir-Prelog-Weg 1, 8093, Zurich, Switzerland.
Laboratory for Catalysis and Sustainable Chemistry, Paul Scherrer Institute OSUA 201, Forschungsstrasse 111, 5232, Villigen, Switzerland.

Articles similaires

Silicon Dioxide Water Hot Temperature Compressive Strength X-Ray Diffraction
Biomass Lignin Wood Populus Microscopy, Electron, Scanning
Citrus Phenylalanine Ammonia-Lyase Stress, Physiological Multigene Family Phylogeny

Classifications MeSH