Linear-Zero Mode Waveguides for Single-Molecule Fluorescence Observation of Nucleotides in Kinesin-Microtubule Motility Assay.


Journal

Methods in molecular biology (Clifton, N.J.)
ISSN: 1940-6029
Titre abrégé: Methods Mol Biol
Pays: United States
ID NLM: 9214969

Informations de publication

Date de publication:
2022
Historique:
entrez: 27 4 2022
pubmed: 28 4 2022
medline: 30 4 2022
Statut: ppublish

Résumé

Single-molecule fluorescence microscopy is a key tool to investigate the chemo-mechanical coupling of microtubule-associated motor proteins, such as kinesin. However, a major limitation of the implementation of single-molecule observation is the concentration of fluorescently labeled molecules. For example, in total internal reflection fluorescence microscopy, the available concentration is of the order of 10 nM. This concentration is much lower than the concentration of adenosine triphosphate (ATP) in vivo, hindering the single-molecule observation of fluorescently labeled ATP hydrolyzed by motor proteins under the physiologically relevant conditions. Here, we provide a method for the use of single-molecule fluorescence microscopy in the presence of ~500 nM of fluorescently labeled ATP. To achieve this, a device equipped with nano-slits is used to confine excitation light into its slits as an expansion of zero-mode waveguides (ZMWs). Conventional ZMWs equip apertures with a diameter smaller than the wavelength of light to suppress background noise from the labeled molecules diffusing outside of the apertures. While they are not compatible with filamentous objects, our linear-ZMWs enable the usage of filamentous objects, such as microtubules. An experiment using linear-ZMWs demonstrated the successful exploration of the interaction between kinesin and ATP using single-molecule fluorescence microscopy.

Identifiants

pubmed: 35476329
doi: 10.1007/978-1-0716-1983-4_8
doi:

Substances chimiques

Nucleotides 0
Adenosine Triphosphate 8L70Q75FXE
Kinesins EC 3.6.4.4

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

121-131

Informations de copyright

© 2022. The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature.

Références

Enoki S, Iino R, Niitani Y et al (2015) High-speed angle-resolved imaging of a single gold nanorod with microsecond temporal resolution and one-degree angle precision. Anal Chem 87:2079–2086
doi: 10.1021/ac502408c
Hackney DD (1988) Kinesin ATPase: rate-limiting ADP release. Proc Natl Acad Sci U S A 85:6314–6318
doi: 10.1073/pnas.85.17.6314
Verbrugge S, Lechner B, Woehlke G et al (2009) Alternating-site mechanism of kinesin-1 characterized by single-molecule FRET using fluorescent ATP analogues. Biophys J 97:173–182
doi: 10.1016/j.bpj.2009.02.073
Uemura S, Aitken CE, Korlach J et al (2010) Real-time tRNA transit on single translating ribosomes at codon resolution. Nature 464:1012–1017
doi: 10.1038/nature08925
Levene HJ, Korlach J, Turner SW et al (2003) Zero-mode waveguides for single-molecule analysis at high concentrations. Science 299:682–686
doi: 10.1126/science.1079700
Fujimoto K, Morita Y, Iino R et al (2018) Simultaneous observation of kinesin-driven microtubule motility and binding of adenosine triphosphate using linear zero-mode waveguides. ACS Nano 12:11975–11985
doi: 10.1021/acsnano.8b03803
Yokokawa R, Tarhan MC, Kon T et al (2008) Simultaneous and bidirectional transport of kinesin-coated microspheres and dynein-coated microspheres on polarity-oriented microtubules. Biotechnol Bioeng 101:1–8
doi: 10.1002/bit.21874
Castoldi M, Popov AV (2003) Purification of brain tubulin through two cycles of polymerization- depolymerization in a high-molarity buffer. Protein Expr Purif 32:83–88
doi: 10.1016/S1046-5928(03)00218-3
Korlach J, Marks PJ, Cicero RL et al (2008) Selective aluminum passivation for targeted immobilization of single DNA polymerase molecules in zero-mode waveguide nanostructures. Proc Natl Acad Sci U S A 105:1176–1181
doi: 10.1073/pnas.0710982105

Auteurs

Kazuya Fujimoto (K)

Department of Micro Engineering, Kyoto University, Kyoto, Japan.

Ryota Iino (R)

Institute for Molecular Science, National Institutes of Natural Sciences, Okazaki, Aichi, Japan.

Ryuji Yokokawa (R)

Department of Micro Engineering, Kyoto University, Kyoto, Japan. yokokawa.ryuji.8c@kyoto-u.ac.jp.

Articles similaires

Adenosine Triphosphate Adenosine Diphosphate Mitochondrial ADP, ATP Translocases Binding Sites Mitochondria

Maternal genetic variants in kinesin motor domains prematurely increase egg aneuploidy.

Leelabati Biswas, Katarzyna M Tyc, Mansour Aboelenain et al.
1.00
Aneuploidy Kinesins Female Humans Animals

Elucidating ATP's role as solubilizer of biomolecular aggregate.

Susmita Sarkar, Saurabh Gupta, Chiranjit Mahato et al.
1.00
Adenosine Triphosphate Protein Aggregates Solubility Humans Protein Conformation

Regulation of minimal spindle midzone organization by mitotic kinases.

Wei Ming Lim, Wei-Xiang Chew, Arianna Esposito Verza et al.
1.00
Spindle Apparatus Phosphorylation Humans CDC2 Protein Kinase Protein Serine-Threonine Kinases

Classifications MeSH