Monitoring the Disruptive Effects of Tubulin-Binding Agents on Cellular Microtubules.

Immunocytochemistry Microtubule dynamics Microtubules Reassembly assay Spindle microtubule dynamics Tubulin-binding agents

Journal

Methods in molecular biology (Clifton, N.J.)
ISSN: 1940-6029
Titre abrégé: Methods Mol Biol
Pays: United States
ID NLM: 9214969

Informations de publication

Date de publication:
2022
Historique:
entrez: 27 4 2022
pubmed: 28 4 2022
medline: 30 4 2022
Statut: ppublish

Résumé

Tubulin-binding agents are an important class of chemotherapeutic agents. This chapter describes detailed protocols to examine the effects of tubulin-binding agents on cellular microtubules. The methods can be utilized for the screening of novel chemotherapeutic agents targeting microtubules. These assays can also be extended to study the effects of various proteins on the stability of microtubules. We have described five assays, which together provides qualitative and quantitative information about the effects of tubulin-binding agents on microtubule stability and dynamics. The key steps and crucial information regarding different steps have been included along with the theory of each of the assays.

Identifiants

pubmed: 35476348
doi: 10.1007/978-1-0716-1983-4_27
doi:

Substances chimiques

Antimitotic Agents 0
Antineoplastic Agents 0
Tubulin 0

Types de publication

Journal Article Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

431-448

Informations de copyright

© 2022. The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature.

Références

Jordan MA, Wilson L (2004) Microtubules as a target for anticancer drugs. Nat Rev Cancer 4:253–265
doi: 10.1038/nrc1317
Shi J, Mitchison TJ (2017) Cell death response to anti-mitotic drug treatment in cell culture, mouse tumor model and the clinic. Endocr Relat Cancer 24:83–96
doi: 10.1530/ERC-17-0003
Dumontet C, Jordan MA (2010) Microtubule-binding agents: a dynamic field of cancer therapeutics. Nat Rev Drug Discov 9:790–803
doi: 10.1038/nrd3253
Xiao H, Verdier-Pinard P, Fernandez-Fuentes N, Burd B, Angeletti R, Fiser A, Horwitz SB, Orr GA (2006) Insights into the mechanism of microtubule stabilization by Taxol. Proc Natl Acad Sci U S A 103:10166–10173
doi: 10.1073/pnas.0603704103
Kellogg EH, Hejab NMA, Howes S, Northcote P, Miller JH, Díaz JF, Downing KH, Nogales E (2017) Insights into the distinct mechanisms of action of Taxane and non-Taxane microtubule stabilizers from Cryo-EM structures. J Mol Biol 429:633–646
doi: 10.1016/j.jmb.2017.01.001
Steinmetz M, Prota A (2018) Microtubule-targeting agents: strategies to hijack the cytoskeleton. Trends Cell Biol 28:776–792
doi: 10.1016/j.tcb.2018.05.001
De Brabander M, Geuens G, Nuydens R, Willebrords R, De Mey J (1981) Taxol induces the assembly of free microtubules in living cells and blocks the organizing capacity of the centrosomes and kinetochores. Proc Natl Acad Sci U S A 78:5608–5612
doi: 10.1073/pnas.78.9.5608
Chaudhary V, Venghateri JB, Dhaked HPS, Bhoyar AS, Guchhait SK, Panda D (2016) Novel Combretastatin-2-aminoimidazole analogues as potent tubulin assembly inhibitors: exploration of unique Pharmacophoric impact of bridging skeleton and aryl moiety. J Med Chem 59:3439–3451
doi: 10.1021/acs.jmedchem.6b00101
Hura N, Sawant AV, Kumari A, Guchhait SK, Panda D (2018) Combretastatin-inspired heterocycles as Antitubulin anticancer agents. ACS Omega 3:9754–9769
doi: 10.1021/acsomega.8b00996
Liao VWY, Kumari A, Narlawar R, Vignarajan S, Hibbs DE, Panda D, Groundwater PW (2020) Tubulin-binding 3,5-Bis(styryl)pyrazoles as Lead compounds for the treatment of castration-resistant prostate cancer. Mol Pharmacol 97:409–422
doi: 10.1124/mol.119.118539
Kumari A, Srivastava S, Manne RK, Sisodiya S, Santra MK, Guchhait SK, Panda D (2019) C12, a combretastatin-A4 analog, exerts anticancer activity by targeting microtubules. Biochem Pharmacol 170:113663
doi: 10.1016/j.bcp.2019.113663
Srivastava S, Panda D (2018) A centrosomal protein STARD9 promotes microtubule stability and regulates spindle microtubule dynamics. Cell Cycle 17:2052–2068
doi: 10.1080/15384101.2018.1513764
Mohan R, Panda D (2008) Kinetic stabilization of microtubule dynamics by Estramustine is associated with tubulin acetylation, spindle abnormalities, and mitotic arrest. Cancer Res 68:6181–6189
doi: 10.1158/0008-5472.CAN-08-0584
Rathinasamy K, Jindal B, Asthana J, Singh P, Balaji PV, Panda D (2010) Griseofulvin stabilizes microtubule dynamics, activates p53 and inhibits the proliferation of MCF-7 cells synergistically with vinblastine. BMC Cancer 10:213
doi: 10.1186/1471-2407-10-213
Kapoor S, Panda D (2012) Kinetic stabilization of microtubule dynamics by indanocine perturbs EB1 localization, induces defects in cell polarity and inhibits migration of MDA-MB-231 cells. Biochem Pharmacol 83:1495–1506
doi: 10.1016/j.bcp.2012.02.012
Salmon ED, Leslie RJ, Saxton WM, Karow ML, McIntosh JR (1984) Spindle microtubule dynamics in sea urchin embryos: analysis using a fluorescein-labeled tubulin and measurements of fluorescence redistribution after laser photobleaching. J Cell Biol 99:2165–2174
doi: 10.1083/jcb.99.6.2165
Srivastava S, Panda D (2017) A centrosomal protein FOR20 regulates microtubule assembly dynamics and plays a role in cell migration. Biochem J 474:2841–2859
doi: 10.1042/BCJ20170303
Asthana J, Kuchibhatla A, Jana SC, Ray K, Panda D (2012) Dynein light chain 1 (LC8) association enhances microtubule stability and promotes microtubule bundling. J Biol Chem 287:40793–40805
doi: 10.1074/jbc.M112.394353
Asthana J, Kapoor S, Mohan R, Panda D (2013) Inhibition of HDAC6 deacetylase activity increases its binding with microtubules and suppresses microtubule dynamic instability in MCF-7 cells. J Biol Chem 288:22516–22526
doi: 10.1074/jbc.M113.489328
Breitling F, Little M (1986) Carboxy-terminal regions on the surface of tubulin and microtubules. Epitope locations of YOL1/34, DM1A and DM1B. J Mol Biol 189:367–370
doi: 10.1016/0022-2836(86)90517-6
Lee JC, Timasheff SN (1977) In vitro reconstitution of calf brain microtubules: effects of solution variables. Biochemistry 16:1754–1764
doi: 10.1021/bi00627a037
Li G, Moore JK (2020) Microtubule dynamics at low temperature: evidence that tubulin recycling limits assembly. Mol Biol Cell 31:1154–1166
doi: 10.1091/mbc.E19-11-0634
De Brabander MJ, Van de Velre RML, Aerts FEM, Borgers M, Janssen PAJ (1976) The effects of methyl (5-(2-thienylcarbonyl)-1H-benzimidazol-2-yl) carbamate, (R 17934; NSC 238159), a new synthetic antitumoral drug interfering with microtubules, on mammalian cells cultured in vitro. Cancer Res 36:905–916
Brabander MD, Van de Veire R, Aerts F, Geuens S, Hoebeke J (1976) A new culture model facilitating rapid quantitative testing of mitotic spindle inhibition in mammalian cells. J Natl Cancer Inst 56:357–363
doi: 10.1093/jnci/56.2.357
Mitchison T, Kirschner M (1984) Dynamic instability of microtubule growth. Nature 312:237–242
doi: 10.1038/312237a0
Walker RA, O’Brien ET, Pryer NK, Soboeiro MF, Voter WA, Erickson HP, Salmon ED (1988) Dynamic instability of individual microtubules analyzed by video light microscopy: rate constants and transition frequencies. J Cell Biol 107:1437–1448
doi: 10.1083/jcb.107.4.1437
Margolis RL, Wilson L (1978) Opposite end assembly and disassembly of microtubules at steady state in vitro. Cell 13:1–8
doi: 10.1016/0092-8674(78)90132-0
Rodionov VI, Borisy GG (1997) Microtubule Treadmilling in vivo. Science 275:215–218
doi: 10.1126/science.275.5297.215
Panda D, Miller HP, Wilson L (1999) Rapid treadmilling of brain microtubules free of microtubule-associated proteins in vitro and its suppression by tau. Proc Natl Acad Sci U S A 96:12459–12464
doi: 10.1073/pnas.96.22.12459
Dhamodharan R, Jordan MA, Thrower D, Wilson L, Wadsworth P (1995) Vinblastine suppresses dynamics of individual microtubules in living interphase cells. Mol Biol Cell 6:1215–1229
doi: 10.1091/mbc.6.9.1215
Naaz A, Ahad S, Rai A, Surolia A, Panda D (2019) BubR1 depletion delays apoptosis in the microtubule-depolymerized cells. Biochem Pharmacol 162:177–190
doi: 10.1016/j.bcp.2018.11.015
Buster DW, Zhang D, Sharp DJ (2007) Poleward tubulin flux in spindles: regulation and function in mitotic cells. Mol Biol Cell 18:3094–3104
doi: 10.1091/mbc.e06-11-0994
Rizk RS, Bohannon KP, Wetzel LA, Powers J, Shaw SL, Walczak CE (2009) MCAK and paclitaxel have differential effects on spindle microtubule organization and dynamics. Mol Biol Cell 20:1639–1651
doi: 10.1091/mbc.e08-09-0985

Auteurs

Anuradha Kumari (A)

Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, India.

Dulal Panda (D)

Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, India. panda@iitb.ac.in.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs
Humans Male Female Health Knowledge, Attitudes, Practice Middle Aged
Humans Female Alopecia Breast Neoplasms Middle Aged
Neoplastic Stem Cells Animals Humans Aldehyde Dehydrogenase Tretinoin

Classifications MeSH