Coupling CRISPR interference with FACS enrichment: New approach in glycoengineering of CHO cell lines for therapeutic glycoprotein production.
CHO cells
cell line development
fucosylation
glycoengineering
therapeutic glycoproteins
Journal
Biotechnology journal
ISSN: 1860-7314
Titre abrégé: Biotechnol J
Pays: Germany
ID NLM: 101265833
Informations de publication
Date de publication:
Jul 2022
Jul 2022
Historique:
revised:
10
04
2022
received:
15
09
2021
accepted:
23
04
2022
pubmed:
29
4
2022
medline:
16
7
2022
entrez:
28
4
2022
Statut:
ppublish
Résumé
Difficulties in obtaining and maintaining the desired level of the critical quality attributes (CQAs) of therapeutic proteins as well as the pace of the development are major challenges of current biopharmaceutical development. Therapeutic proteins, both innovative and biosimilars, are mostly glycosylated. Glycans directly influence the stability, potency, plasma half-life, immunogenicity, and effector functions of the therapeutic. Hence, glycosylation is widely recognized as a process-dependent CQA of therapeutic glycoproteins. Due to the typically high heterogeneity of glycoforms attached to the proteins, control of glycosylation represents one of the most challenging aspects of biopharmaceutical development. Here, we explored a new glycoengineering approach in therapeutic glycoproteins development, which enabled us to achieve the targeted glycoprofile of the Fc-fusion protein in a fast manner. Coupling CRISPRi technology with lectin-FACS sorting enabled downregulation of the endogenous gene involved in fucosylation and further enrichment of CHO cells producing Fc-fusion proteins with reduced fucosylation levels. Enrichment of cells with targeted glycoprofile can lead to time-optimized clone screening and speed up cell line development. Moreover, the presented approach allows isolation of clones with varying levels of fucosylation, which makes it applicable to a broad range of glycoproteins differing in target fucosylation level.
Identifiants
pubmed: 35481906
doi: 10.1002/biot.202100499
doi:
Substances chimiques
Biosimilar Pharmaceuticals
0
Glycoproteins
0
Polysaccharides
0
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
e2100499Subventions
Organisme : Slovenian Ministry of Education Science and Sport
ID : OP20.04327(C3330-19-952017)
Organisme : EU - European Regional Development Fund
ID : OP20.04327(C3330-19-952017)
Informations de copyright
© 2022 The Authors. Biotechnology Journal published by Wiley-VCH GmbH.
Références
Solá, R. J., & Griebenow, K. (2010). Glycosylation of therapeutic proteins. Biodrugs, 24, 9-21.
Delobel, A. (2021). Glycosylation of Therapeutic Proteins: A Critical Quality Attribute, Humana Press Inc.
Walsh, G. (2018). Biopharmaceutical benchmarks 2018. Nature Biotechnology, 36, 1136-1145.
European Medicines Agency. (2015). EMEA/CHMP/BMWP/42832/2005,.
Welch, A. R. (2018). In Biosimilars, Vol. 34 (Eds: H. J. Gutka, H. Yang, S. Kakar) Springer, Cham, Ch. 1.
FDA. (2015) FDA-2011-D-0605.
Gherghescu, I., & Delgado-Charro, M. B. (2020). The biosimilar landscape: An overview of regulatory approvals by the EMA and FDA. Pharmaceutics, 13, 48.
Walsh, G. (2010). Post-translational modifications of protein biopharmaceuticals. Drug Discovery Today, 15, 773-780.
Walsh, G., & Jefferis, R. (2006). Post-translational modifications in the context of therapeutic proteins. Nature Biotechnology, 24, 1241-1252.
Tejwani, V., Andersen, M. R., Nam, J. H., & Sharfstein, S. T. (2018). Glycoengineering in CHO cells: Advances in systems biology. Biotechnology Journal, 13, 1700234.
Zhang, P., Woen, S., Wang, T., Liau, B., Zhao, S., Chen, C., Yang, Y., Song, Z., Wormald, M. R., Yu, C., & Rudd, P. M. (2016). Challenges of glycosylation analysis and control: An integrated approach to producing optimal and consistent therapeutic drugs. Drug Discover Today, 21, 740-765.
Liu, L. (2015). Antibody glycosylation and its impact on the pharmacokinetics and pharmacodynamics of monoclonal antibodies and Fc-fusion proteins. Journal of Pharmaceutical Sciences, 104, 1866-1884.
Hajba, L., Szekrényes, Á., Borza, B., & Guttman, A. (2018). On the glycosylation aspects of biosimilarity. Drug Discovery Today, 23, 616-625.
Iida, S., Kuni-Kamochi, R., Mori, K., Misaka, H., Inoue, M., Okazaki, A., Shitara, K., & Satoh, M. (2009). Two mechanisms of the enhanced antibody-dependent cellular cytotoxicity (ADCC) efficacy of non-fucosylated therapeutic antibodies in human blood. BMC cancer, 9, 58.
Pereira, N. A., Chan, K. F., Lin, P. C., & Song, Z. (2018). The less-is-more in therapeutic antibodies: Afucosylated anti-cancer antibodies with enhanced antibody-dependent cellular cytotoxicity. MAbs, 10, 693-711.
Shields, R. L., Lai, J., Keck, R., O'connell, L. Y., Hong, K., Meng, Y. G., Weikert, S. H. A., & Presta, L. G. (2002). Lack of fucose on human IgG1 N-linked oligosaccharide improves binding to human Fc-RIII and antibody-dependent cellular toxicity. Journal of Biological Chemistry, 277, 26733-26740.
Shoji-Hosaka, E., Kobayashi, Y., Wakitani, M., Uchida, K., Niwa, R., Nakamura, K., & Shitara, K. (2006). Enhanced Fc-dependent cellular cytotoxicity of Fc fusion proteins derived from TNF receptor II and LFA-3 by fucose removal from Asn-linked oligosaccharides. Journal of Biochemistry, 140, 777-783.
Yamane-Ohnuki, N., Kinoshita, S., Inoue-Urakubo, M., Kusunoki, M., Iida, S., Nakano, R., Wakitani, M., Niwa, R., Sakurada, M., Uchida, K., Shitara, K., & Satoh, M. (2004). Establishment ofFUT8 knockout Chinese hamster ovary cells: An ideal host cell line for producing completely defucosylated antibodies with enhanced antibody-dependent cellular cytotoxicity. Biotechnology and Bioengineering, 87, 614-622.
Imai-Nishiya, H., Mori, K., Inoue, M., Wakitani, M., Iida, S., Shitara, K., & Satoh, M. (2007). Double knockdown of α1,6-fucosyltransferase (FUT8) and GDP-mannose 4,6-dehydratase (GMD) in antibody-producing cells: A new strategy for generating fully non-fucosylated therapeutic antibodies with enhanced ADCC. Bmc Biotechnology [Electronic Resource], 7, 84.
Malphettes, L., Freyvert, Y., Chang, J., Liu, P. - Q., Chan, E., Miller, J. C., Zhou, Z., Nguyen, T., Tsai, C., Snowden, A. W., Collingwood, T. N., Gregory, P. D., & Cost, G. J. (2010). Highly efficient deletion of FUT8 in CHO cell lines using zinc-finger nucleases yields cells that produce completely nonfucosylated antibodies. Biotechnology and Bioengineering, 106, 774-783.
Von Horsten, H. H., Ogorek, C., Blanchard, V., Demmler, C., Giese, C., Winkler, K., Kaup, M., Berger, M., Jordan, I., & Sandig, V. (2010). Production of non-fucosylated antibodies by co-expression of heterologous GDP-6-deoxy-D-lyxo-4-hexulose reductase. Glycobiology, 20, 1607-1618.
Chan, K. F., Shahreel, W., Wan, C., Teo, G., Hayati, N., Tay, S. J., Tong, W. H., Yang, Y., Rudd, P. M., Zhang, P., & Song, Z. (2016). Inactivation of GDP-fucose transporter gene ( Slc35c1 ) in CHO cells by ZFNs, TALENs and CRISPR-Cas9 for production of fucose-free antibodies. Biotechnology Journal, 11, 399-414.
Schmieder, V., Bydlinski, N., Strasser, R., Baumann, M., Kildegaard, H. F., Jadhav, V., & Borth, N. (2018). Enhanced genome editing tools for multi-gene deletion knock-out approaches using paired CRISPR sgRNAs in CHO cells. Biotechnology Journal, 13, 1700211.
Amann, T., Hansen, A. H., Kol, S., Hansen, H. G., Arnsdorf, J., Nallapareddy, S., Voldborg, B., Lee, G. M., Andersen, M. R., & Kildegaard, H. F. (2019). Glyco-engineered CHO cell lines producing alpha-1-antitrypsin and C1 esterase inhibitor with fully humanized N-glycosylation profiles. Metabolic Engineering, 52, 143-152.
Ronda, C., Pedersen, L. E., Hansen, H. G., Kallehauge, T. B., Betenbaugh, M. J., Nielsen, A. T., & Kildegaard, H. F. (2014). Accelerating genome editing in CHO cells using CRISPR Cas9 and CRISPy, a web-based target finding tool. Biotechnology and Bioengineering, 111, 1604-1616.
Chang, M. M., Gaidukov, L., Jung, G., Tseng, W. A., Scarcelli, J. J., Cornell, R., Marshall, J. K., Lyles, J. L., Sakorafas, P., Chu, A. - H., Cote, K., Tzvetkova, B., Dolatshahi, S., Sumit, M., Mulukutla, B. C., Lauffenburger, D. A., Figueroa, B., Summers, N. M., Lu, T. K., & Weiss, R. (2019). Small-molecule control of antibody N-glycosylation in engineered mammalian cells. Nature Chemical Biology, 15, 730-736.
Tobinai, K., Klein, C., Oya, N., & Fingerle-Rowson, G. (2017). A review of Obinutuzumab (GA101), a novel Type II Anti-CD20 monoclonal antibody, for the treatment of patients with B-Cell malignancies. Advances in Therapy, 34, 324-356.
Li, C., Rossomando, A., Wu, S. -. L., & Karger, B. L. (2013). Comparability analysis of anti-CD20 commercial (rituximab) and RNAi-mediated fucosylated antibodies by two LC-MS approaches. MAbs, 5, 565-575.
Goletz, C., Lischke, T., Harnack, U., Schiele, P., Danielczyk, A., Rühmann, J., & Goletz, S. (2018). Glyco-engineered anti-human programmed death-ligand 1 antibody mediates stronger CD8 T Cell activation than its normal glycosylated and non-glycosylated counterparts. Frontiers in Immunology, 9, 16.
Gao, Y., Xiong, X., Wong, S., Charles, E. J., Lim, W. A., & Qi, L. S. (2016). Complex transcriptional modulation with orthogonal and inducible dCas9 regulators. Nature Methods, 13, 1043-1049.
Lin, J. '., Neo, S. H., Ho, S. C. L., Yeo, J. H. M., Wang, T., Zhang, W., Bi, X., Chao, S. -. H., & Yang, Y. (2017). Impact of signal peptides on Furin-2A mediated monoclonal antibody secretion in CHO cells. Biotechnology Journal, 12, 1700268.
Chen, B., Hu, J., Almeida, R., Liu, H., Balakrishnan, S., Covill-Cooke, C., Lim, W. A., & Huang, B. (2016). Expanding the CRISPR imaging toolset with Staphylococcus aureus Cas9 for simultaneous imaging of multiple genomic loci. Nucleic Acids Research, 44, e75.
Stemmer, M., Thumberger, T., Del Sol Keyer, M., Wittbrodt, J., & Mateo, J. L. (2015). CCTop: An intuitive, flexible and reliable CRISPR/Cas9 target prediction tool. Plos One, 4, e0124633.
Gilbert, L. A., Horlbeck, M. A., Adamson, B., Villalta, J. E., Chen, Y., Whitehead, E. H., Guimaraes, C., Panning, B., Ploegh, H. L., Bassik, M. C., Qi, L. S., Kampmann, M., & Weissman, J. S. (2014). Genome-scale CRISPR-mediated control of gene repression and activation. Cell, 159, 647-661.
Li, R., Xia, X., Wang, X., Sun, X., Dai, Z., Huo, D., Zheng, H., Xiong, H., He, A., & Wu, X. (2020). PLoS Biology, 18, 11.
Yu, K.-R., Corat, M. A. F., Metais, J.-Y., & Dunbar, C. E. (2016). 564. The cytotoxic effect of RNA-guided endonuclease Cas9 on human hematopoietic stem and progenitor cells (HSPCs). Molecular Therapy, 24, S225-S226.
Livak, K. J., & Schmittgen, T. D. (2001). Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods (San Diego, Calif.), 25, 402-408.
Chavez, A., Tuttle, M., Pruitt, B. W., Ewen-Campen, B., Chari, R., Ter-Ovanesyan, D., Haque, S. J., Cecchi, R. J., Kowal, E. J. K., Buchthal, J., Housden, B. E., Perrimon, N., Collins, J. J., & Church, G. (2016). Comparison of Cas9 activators in multiple species. Nature Methods, 13, 563-567.
Karottki, K. J. L. C., Hefzi, H., Xiong, K., Shamie, I., Hansen, A. H., Li, S., Pedersen, L. E., Li, S., Lee, J. S., Lee, G. M., Kildegaard, H. F., & Lewis, N. E. (2020). Awakening dormant glycosyltransferases in CHO cells with CRISPRa. Biotechnology and Bioengineering, 117, 593-598.
Van Berkel, P. H. C., Gerritsen, J., Perdok, G., Valbjørn, J., Vink, T., Van De Winkel, J. G. J., & Parren, P. (2009). N-linked glycosylation is an important parameter for optimal selection of cell lines producing biopharmaceutical human IgG. Biotechnology Progress, 25, 244-251.
Ma, B., Guan, X., Li, Y., Shang, S., Li, J., & Tan, Z. (2020). Protein glycoengineering: An approach for improving protein properties. Frontiers Chemistry, 8, 622.
Kanda, Y., Imai-Nishiya, H., Kuni-Kamochi, R., Mori, K., Inoue, M., Kitajima-Miyama, K., Okazaki, A., Iida, S., Shitara, K., & Satoh, M. (2007). Establishment of a GDP-mannose 4,6-dehydratase (GMD) knockout host cell line: A new strategy for generating completely non-fucosylated recombinant therapeutics. Journal of Biotechnology, 130, 300-310.
Karottki, K. J. L. C., Hefzi, H., Xiong, K., Shamie, I., Hansen, A. H., Li, S., Pedersen, L. E., Li, S., Lee, J. S., Lee, G. M., Kildegaard, H. F., & Lewis, N. E. (2020). Awakening dormant glycosyltransferases in CHO cells with CRISPRa. Biotechnology and Bioengineering, 117, 593-598.
Lee, J. S., Grav, L. M., Lewis, N. E., & Faustrup Kildegaard, H. (2015). CRISPR/Cas9-mediated genome engineering of CHO cell factories: Application and perspectives. Biotechnology Journal, 10, 979-994.
Shen, C.-C., Lin, M.-W., Nguyen, B. K. T., Chang, C.- W., Shih, J.-R., Nguyen, M. T. T., Chang, Y.-H., & Hu, Y.-C. (2020). CRISPR-Cas13d for gene knockdown and engineering of CHO cells. ACS Synth Biology, 9, 2808-2818.
Suga, A., Nagae, M., & Yamaguchi, Y. (2018). Analysis of protein landscapes around N-glycosylation sites from the PDB repository for understanding the structural basis of N-glycoprotein processing and maturation. Glycobiology, 28, 774-785.
Thaysen-Andersen, M., & Packer, N. H. (2012). Site-specific glycoproteomics confirms that protein structure dictates formation of N-glycan type, core fucosylation and branching. Glycobiology, 22, 1440-1452.
Lai, T., Yang, Y., & Ng, S. (2013). Advances in mammalian cell line development technologies for recombinant protein production. Pharmaceuticals, 6, 579-603.
Lin, N., Mascarenhas, J., Sealover, N. R., George, H. J., Brooks, J., Kayser, K. J., Gau, B., Yasa, I., Azadi, P., & Archer-Hartmann, S. (2015). Chinese hamster ovary (CHO) host cell engineering to increase sialylation of recombinant therapeutic proteins by modulating sialyltransferase expression. Biotechnology Progress, 31, 334-346.
Lalonde, M.-E., Koyuturk, I., Brochu, D., Jabbour, J., Gilbert, M., & Durocher, Y. (2020). Production of α2,6-sialylated and non-fucosylated recombinant alpha-1-antitrypsin in CHO cells. Journal of Biotechnology, 307, 87-97.
Hansen, H. G., Pristovšek, N., Kildegaard, H. F., & Lee, G. M. (2017). Improving the secretory capacity of Chinese hamster ovary cells by ectopic expression of effector genes: Lessons learned and future directions. Biotechnology Advances, 35, 64-76.
Lagassé, H. A. D., Alexaki, A., Simhadri, V. L., Katagiri, N. H., Jankowski, W., Sauna, Z. E., & Kimchi-Sarfaty, C. (2017). Recent advances in (therapeutic protein) drug development. F1000Research, 6, 113.
Mishra, N., Spearman, M., Donald, L., Perreault, H., & Butler, M. (2020). Comparison of two glycoengineering strategies to control the fucosylation of a monoclonal antibody. Journal of Biotechnology X, 5, 100015.
Yeo, N. C., Chavez, A., Lance-Byrne, A., Chan, Y., Menn, D., Milanova, D., Kuo, C.-C., Guo, X., Sharma, S., Tung, A., Cecchi, R. J., Tuttle, M., Pradhan, S., Lim, E. T., Davidsohn, N., Ebrahimkhani, M. R., Collins, J. J., Lewis, N. E., Kiani, S., & Church, G. M. (2018). An enhanced CRISPR repressor for targeted mammalian gene regulation. Nature Methods, 15, 611.
Xiong, K., Marquart, K. F., Cour Karottki, K. J., Li, S., Shamie, I., Lee, J. S., Gerling, S., Yeo, N. C., Chavez, A., Lee, G. M., Lewis, N. E., & Kildegaard, H. F. (2019). Reduced apoptosis in Chinese hamster ovary cells via optimized CRISPR interference. Biotechnology and Bioengineering, 116, 1813.
Beuger, V., Künkele, K.-P., Koll, H., Gärtner, A., Bähner, M., Burtscher, H., & Klein, C. (2009). Short-hairpin-RNA-mediated silencing of fucosyltransferase 8 in Chinese-hamster ovary cells for the production of antibodies with enhanced antibody immune effector function. Biotechnology and Applied Biochemistry, 53, 31.
Marx, N., Grünwald-Gruber, C., Bydlinski, N., Dhiman, H., Ngoc Nguyen, L., Klanert, G., & Borth, N. (2018). CRISPR-based targeted epigenetic editing enables gene expression modulation of the silenced beta-galactoside Alpha-2,6-Sialyltransferase 1 in CHO cells. Biotechnology Journal, 13, 1700217.
Brunner, M., Fricke, J., Kroll, P., & Herwig, C. (2017). Investigation of the interactions of critical scale-up parameters (pH, pO2 and pCO2) on CHO batch performance and critical quality attributes. Bioprocess Biosystems Engineering, 40, 251.
Wallner, J., Sissolak, B., Sommeregger, W., Lingg, N., Striedner, G., & Vorauer-Uhl, K. (2019). Lectin bio-layer interferometry for assessing product quality of Fc-glycosylated immunoglobulin G. Biotechnology Progress, 35, e2864.
Popp, O., Moser, S., Zielonka, J., Rüger, P., Hansen, S., & Plöttner, O. (2018). Development of a pre-glycoengineered CHO-K1 host cell line for the expression of antibodies with enhanced Fc mediated effector function. MAbs, 10, 290.