Prostaglandin A2 Interacts with Nurr1 and Ameliorates Behavioral Deficits in Parkinson's Disease Fly Model.


Journal

Neuromolecular medicine
ISSN: 1559-1174
Titre abrégé: Neuromolecular Med
Pays: United States
ID NLM: 101135365

Informations de publication

Date de publication:
12 2022
Historique:
received: 14 01 2022
accepted: 09 04 2022
pubmed: 29 4 2022
medline: 26 11 2022
entrez: 28 4 2022
Statut: ppublish

Résumé

The orphan nuclear receptor Nurr1 is critical for the development, maintenance, and protection of midbrain dopaminergic neurons. Recently, we demonstrated that prostaglandins E1 (PGE1) and PGA1 directly bind to the ligand-binding domain (LBD) of Nurr1 and stimulate its transcriptional activation function. In this direction, here we report the transcriptional activation of Nurr1 by PGA2, a dehydrated metabolite of PGE2, through physical binding ably supported by NMR titration and crystal structure. The co-crystal structure of Nurr1-LBD bound to PGA2 revealed the covalent coupling of PGA2 with Nurr1-LBD through Cys566. PGA2 binding also induces a 21° shift of the activation function 2 (AF-2) helix H12 away from the protein core, similar to that observed in the Nurr1-LBD-PGA1 complex. We also show that PGA2 can rescue the locomotor deficits and neuronal degeneration in LRRK2 G2019S transgenic fly models.

Identifiants

pubmed: 35482177
doi: 10.1007/s12017-022-08712-3
pii: 10.1007/s12017-022-08712-3
doi:

Substances chimiques

Ligands 0
Nuclear Receptor Subfamily 4, Group A, Member 2 0
prostaglandin A2 K6VT5BDY9E
Prostaglandins A 0

Types de publication

Journal Article Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

469-478

Informations de copyright

© 2022. The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature.

Références

Aarnisalo, P., Kim, C. H., Lee, J. W., & Perlmann, T. (2002). Defining requirements for heterodimerization between the retinoid X receptor and the orphan nuclear receptor Nurr1. Journal of Biological Chemistry, 277(38), 35118–35123. https://doi.org/10.1074/jbc.M201707200
doi: 10.1074/jbc.M201707200
Baker, K. D., Shewchuk, L. M., Kozlova, T., Makishima, M., Hassell, A., Wisely, B., et al. (2003). The Drosophila orphan nuclear receptor DHR38 mediates an atypical ecdysteroid signaling pathway. Cell, 113(6), 731–742. https://doi.org/10.1016/s0092-8674(03)00420-3
doi: 10.1016/s0092-8674(03)00420-3
Battye, T. G., Kontogiannis, L., Johnson, O., Powell, H. R., & Leslie, A. G. (2011). iMOSFLM: A new graphical interface for diffraction-image processing with MOSFLM. Acta Crystallographica Section D Biological Crystallography, 67(Pt 4), 271–281. https://doi.org/10.1107/s0907444910048675
doi: 10.1107/s0907444910048675
Bruning, J. M., Wang, Y., Oltrabella, F., Tian, B., Kholodar, S. A., Liu, H., et al. (2019). Covalent Modification and Regulation of the Nuclear Receptor Nurr1 by a Dopamine Metabolite. Cell Chemical Biology, 26(5), 674-685.e676. https://doi.org/10.1016/j.chembiol.2019.02.002
doi: 10.1016/j.chembiol.2019.02.002
Chu, Y., Le, W., Kompoliti, K., Jankovic, J., Mufson, E. J., & Kordower, J. H. (2006). Nurr1 in Parkinson’s disease and related disorders. Journal of Comparative Neurology, 494(3), 495–514. https://doi.org/10.1002/cne.20828
doi: 10.1002/cne.20828
Codina, A., Benoit, G., Gooch, J. T., Neuhaus, D., Perlmann, T., & Schwabe, J. W. (2004). Identification of a novel co-regulator interaction surface on the ligand binding domain of Nurr1 using NMR footprinting. Journal of Biological Chemistry, 279(51), 53338–53345. https://doi.org/10.1074/jbc.M409096200
doi: 10.1074/jbc.M409096200
de Vera, I. M., Giri, P. K., Munoz-Tello, P., Brust, R., Fuhrmann, J., Matta-Camacho, E., et al. (2016). Identification of a binding site for unsaturated fatty acids in the orphan nuclear receptor Nurr1. ACS Chemical Biology, 11(7), 1795–1799. https://doi.org/10.1021/acschembio.6b00037
doi: 10.1021/acschembio.6b00037
Decressac, M., Volakakis, N., Bjorklund, A., & Perlmann, T. (2013). NURR1 in Parkinson disease–from pathogenesis to therapeutic potential. Nature Review Neurology, 9(11), 629–636. https://doi.org/10.1038/nrneurol.2013.209
doi: 10.1038/nrneurol.2013.209
Emsley, P., & Cowtan, K. (2004). Coot: Model-building tools for molecular graphics. Acta Crystallographica Section D Biological Crystallography, 60(Pt 12 Pt 1), 2126–2132. https://doi.org/10.1107/s0907444904019158
doi: 10.1107/s0907444904019158
Evans, P. (2006). Scaling and assessment of data quality. Acta Crystallographica Section D Biological Crystallography, 62(Pt 1), 72–82. https://doi.org/10.1107/S0907444905036693
doi: 10.1107/S0907444905036693
Flaig, R., Greschik, H., Peluso-Iltis, C., & Moras, D. (2005). Structural basis for the cell-specific activities of the NGFI-B and the Nurr1 ligand-binding domain. Journal of Biological Chemistry, 280(19), 19250–19258. https://doi.org/10.1074/jbc.M413175200
doi: 10.1074/jbc.M413175200
Freund, C., Schmalz, H. G., Sticht, J., & Kuhne, R. (2008). Proline-rich sequence recognition domains (PRD): Ligands, function and inhibition. Handbook of experimental pharmacology (Vol. 186, pp. 407–429). Springer. https://doi.org/10.1007/978-3-540-72843-6_17
doi: 10.1007/978-3-540-72843-6_17
Kagaya, S., Ohkura, N., Tsukada, T., Miyagawa, M., Sugita, Y., Tsujimoto, G., et al. (2005). Prostaglandin A2 acts as a transactivator for NOR1 (NR4A3) within the nuclear receptor superfamily. Biological and Pharmaceutical Bulletin, 28(9), 1603–1607.  https://doi.org/10.1248/bpb.28.1603
doi: 10.1248/bpb.28.1603
Kim, K. S., Kim, C. H., Hwang, D. Y., Seo, H., Chung, S., Hong, S. J., et al. (2003). Orphan nuclear receptor Nurr1 directly transactivates the promoter activity of the tyrosine hydroxylase gene in a cell-specific manner. Journal of Neurochemistry, 85(3), 622–634. https://doi.org/10.1046/j.1471-4159.2003.01671.x
doi: 10.1046/j.1471-4159.2003.01671.x
Kim, C.-H., Han, B.-S., Moon, J., Kim, D.-J., Shin, J., Rajan, S., et al. (2015). Nuclear receptor Nurr1 agonists enhance its dual functions and improve behavioral deficits in an animal model of Parkinson’s disease. Proceedings of the National Academy of Sciences USA, 112(28), 8756–8761.  https://doi.org/10.1073/pnas.1509742112
doi: 10.1073/pnas.1509742112
Lakshmi, S. P., Reddy, A. T., Banno, A., & Reddy, R. C. (2019). Molecular, chemical, and structural characterization of prostaglandin A2 as a novel agonist for Nur77. Biochemical Journal, 476(19), 2757–2767. https://doi.org/10.1042/BCJ20190253
doi: 10.1042/BCJ20190253
Lee, W., Tonelli, M., & Markley, J. L. (2015). NMRFAM-SPARKY: Enhanced software for biomolecular NMR spectroscopy. Bioinformatics, 31(8), 1325–1327. https://doi.org/10.1093/bioinformatics/btu830
doi: 10.1093/bioinformatics/btu830
Li, L., Liu, Y., Chen, H. Z., Li, F. W., Wu, J. F., Zhang, H. K., et al. (2015). Impeding the interaction between Nur77 and p38 reduces LPS-induced inflammation. Nature Chemical Biology, 11(5), 339–346. https://doi.org/10.1038/nchembio.1788
doi: 10.1038/nchembio.1788
Liu, Z., Wang, X., Yu, Y., Li, X., Wang, T., Jiang, H., et al. (2008). A Drosophila model for LRRK2-linked parkinsonism. Proceedings of the National Academy of Sciences USA, 105(7), 2693–2698. https://doi.org/10.1073/pnas.0708452105
doi: 10.1073/pnas.0708452105
Madeira, F., Park, Y. M., Lee, J., Buso, N., Gur, T., Madhusoodanan, N., et al. (2019). The EMBL-EBI search and sequence analysis tools APIs in 2019. Nucleic Acids Research, 47(W1), W636–W641. https://doi.org/10.1093/nar/gkz268
doi: 10.1093/nar/gkz268
McCoy, A. J., Grosse-Kunstleve, R. W., Adams, P. D., Winn, M. D., Storoni, L. C., & Read, R. J. (2007). Phaser crystallographic software. Journal of Applied Crystallography, 40(Pt 4), 658–674. https://doi.org/10.1107/s0021889807021206
doi: 10.1107/s0021889807021206
Murshudov, G. N., Skubak, P., Lebedev, A. A., Pannu, N. S., Steiner, R. A., Nicholls, R. A., et al. (2011). REFMAC5 for the refinement of macromolecular crystal structures. Acta Crystallographica Section D Biological Crystallography, 67(Pt 4), 355–367. https://doi.org/10.1107/S0907444911001314
doi: 10.1107/S0907444911001314
Ng, C. H., Mok, S. Z., Koh, C., Ouyang, X., Fivaz, M. L., Tan, E.-K., et al. (2009). Parkin protects against LRRK2 G2019S mutant-induced dopaminergic neurodegeneration in Drosophila. Journal of Neuroscience, 29(36), 11257–11262.  https://doi.org/10.1523/JNEUROSCI.2375-09.2009
doi: 10.1523/JNEUROSCI.2375-09.2009
Ng, C. H., Guan, M. S., Koh, C., Ouyang, X., Yu, F., Tan, E. K., et al. (2012). AMP kinase activation mitigates dopaminergic dysfunction and mitochondrial abnormalities in Drosophila models of Parkinson’s disease. Journal of Neuroscience, 32(41), 14311–14317. https://doi.org/10.1523/JNEUROSCI.0499-12.2012
doi: 10.1523/JNEUROSCI.0499-12.2012
Rajan, S., Jang, Y., Kim, C. H., Kim, W., Toh, H. T., Jeon, J., et al. (2020). PGE1 and PGA1 bind to Nurr1 and activate its transcriptional function. Nature Chemical Biology, 16(8), 876–886. https://doi.org/10.1038/s41589-020-0553-6
doi: 10.1038/s41589-020-0553-6
Rastinejad, F., Huang, P., Chandra, V., & Khorasanizadeh, S. (2013). Understanding nuclear receptor form and function using structural biology. Journal of Molecular Endocrinology, 51(3), T1–T21.  https://doi.org/10.1530/JME-13-0173
doi: 10.1530/JME-13-0173
Robert, X., & Gouet, P. (2014). Deciphering key features in protein structures with the new ENDscript server. Nucleic Acids Research, 42(W1), W320-324. https://doi.org/10.1093/nar/gku316
doi: 10.1093/nar/gku316
Vellieux, F. M. D., & Dijkstra, B. W. (1997). Computation of Bhat’s OMIT maps with different coefficients. Journal of Applied Crystallography, 30(3), 396–399. https://doi.org/10.1107/S0021889896012551
doi: 10.1107/S0021889896012551
Waku, T., Shiraki, T., Oyama, T., Fujimoto, Y., Maebara, K., Kamiya, N., et al. (2009). Structural insight into PPARgamma activation through covalent modification with endogenous fatty acids. Journal of Molecular Biology, 385(1), 188–199. https://doi.org/10.1016/j.jmb.2008.10.039
doi: 10.1016/j.jmb.2008.10.039
Wang, Z., Benoit, G., Liu, J., Prasad, S., Aarnisalo, P., Liu, X., et al. (2003). Structure and function of Nurr1 identifies a class of ligand-independent nuclear receptors. Nature, 423(6939), 555.  https://doi.org/10.1038/nature01645
doi: 10.1038/nature01645
Wang, C., Lu, R., Ouyang, X., Ho, M. W. L., Chia, W., Yu, F., et al. (2007). Drosophila overexpressing parkin R275W mutant exhibits dopaminergic neuron degeneration and mitochondrial abnormalities. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience, 27(32), 8563–8570. https://doi.org/10.1523/JNEUROSCI.0218-07.2007
doi: 10.1523/JNEUROSCI.0218-07.2007
Wang, W. J., Wang, Y., Chen, H. Z., Xing, Y. Z., Li, F. W., Zhang, Q., et al. (2014). Orphan nuclear receptor TR3 acts in autophagic cell death via mitochondrial signaling pathway. Nature Chemical Biology, 10(2), 133–140. https://doi.org/10.1038/nchembio.1406
doi: 10.1038/nchembio.1406
Wang, W. J., Wang, Y., Hou, P. P., Li, F. W., Zhou, B., Chen, H. Z., et al. (2015). Induction of autophagic death in cancer cells by agonizing TR3 and attenuating Akt2 activity. Chemical Biology, 22(8), 1040–1051. https://doi.org/10.1016/j.chembiol.2015.06.023
doi: 10.1016/j.chembiol.2015.06.023
Weikum, E. R., Liu, X., & Ortlund, E. A. (2018). The nuclear receptor superfamily: A structural perspective. Protein Science, 27(11), 1876–1892. https://doi.org/10.1002/pro.3496
doi: 10.1002/pro.3496
Whitworth, A. J., Theodore, D. A., Greene, J. C., Beneš, H., Wes, P. D., & Pallanck, L. J. (2005). Increased glutathione S-transferase activity rescues dopaminergic neuron loss in a Drosophila model of Parkinson’s disease. Proceedings of the National Academy of Sciences, 102(22), 8024–8029.  https://doi.org/10.1073/pnas.0501078102
doi: 10.1073/pnas.0501078102
Winn, M. D., Ballard, C. C., Cowtan, K. D., Dodson, E. J., Emsley, P., Evans, P. R., et al. (2011). Overview of the CCP4 suite and current developments. Acta Crystallographica Section D Biological Crystallography, 67(Pt 4), 235–242. https://doi.org/10.1107/s0907444910045749
doi: 10.1107/s0907444910045749
Zhan, Y. Y., Chen, Y., Zhang, Q., Zhuang, J. J., Tian, M., Chen, H. Z., et al. (2012). The orphan nuclear receptor Nur77 regulates LKB1 localization and activates AMPK. Nature Chemical Biology, 8(11), 897–904. https://doi.org/10.1038/nchembio.1069
doi: 10.1038/nchembio.1069

Auteurs

Sreekanth Rajan (S)

School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore, 637551, Singapore. srajan@ntu.edu.sg.

Hui Ting Toh (HT)

School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore, 637551, Singapore.

Hong Ye (H)

School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore, 637551, Singapore.

Ziyin Wang (Z)

Neurodegeneration Research Laboratory, National Neuroscience Institute, 11 Jalan Tan Tock Seng, Singapore, 308433, Singapore.

Adeline Henry Basil (AH)

Neurodegeneration Research Laboratory, National Neuroscience Institute, 11 Jalan Tan Tock Seng, Singapore, 308433, Singapore.

Tanvi Parnaik (T)

School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore, 637551, Singapore.

Jun Yeob Yoo (JY)

School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore, 637551, Singapore.

Kah-Leong Lim (KL)

Neurodegeneration Research Laboratory, National Neuroscience Institute, 11 Jalan Tan Tock Seng, Singapore, 308433, Singapore.
Lee Kong Chian School of Medicine, Nanyang Technological University, 11 Mandalay Road, Singapore, 308232, Singapore.

Ho Sup Yoon (HS)

School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore, 637551, Singapore. hsyoon@ntu.edu.sg.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH